Solveeit Logo

Question

Question: The amplitude of \[1 - \cos \theta - i\sin \theta \] is A.\[\pi + \dfrac{\theta }{2}\] B.\[\dfra...

The amplitude of 1cosθisinθ1 - \cos \theta - i\sin \theta is
A.π+θ2\pi + \dfrac{\theta }{2}
B.(πθ)2\dfrac{{\left( {\pi - \theta } \right)}}{2}
C.(θπ)2\dfrac{{\left( {\theta - \pi } \right)}}{2}
D.θ2\dfrac{\theta }{2}

Explanation

Solution

Hint : Complex number is a number generally represented asz=a+ibz = a + ib, where aa and bbis real number represented on real axis whereas iiis an imaginary unit represented on imaginary axis whose value isi=1i = \sqrt { - 1} . Modulus of a complex number is length of line segment on real and imaginary axis generally denoted by z\left| z \right| whereas angle subtended by line segment on real axis is argument of matrix denoted by argument (z) calculated by trigonometric value. Argument of complex numbers is denoted byarg(z)=θ=tan1ba\arg (z) = \theta = {\tan ^{ - 1}}\dfrac{b}{a}.

Complete step-by-step answer :
In this question, we need to determine the amplitude of 1cosθisinθ1 - \cos \theta - i\sin \theta for which we will use the properties of the complex numbers as discussed above.
Let z=1cosθisinθ(i)z = 1 - \cos \theta - i\sin \theta - - (i)
We know the double angle identities theorem of cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x, for angle xxthis identity can be written as 1cosx=2sin2x2(ii)1 - \cos x = 2{\sin ^2}\dfrac{x}{2} - - (ii),
Also we know the double angle identities theorem ofsin2x=2sinxcosx\sin 2x = 2\sin x\cos x, for angle xxthis identity can be written as sinx=2sinx2cosx2(iii)\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} - - (iii)
Now substitute the obtained identities (ii) and (iii) in equation (i), so we get
z=2sin2θ2i2sinθ2cosθ2z = 2{\sin ^2}\dfrac{\theta }{2} - i2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
Now we take 2sinθ22\sin \dfrac{\theta }{2}as common hence we get
z=2sinθ2(sinθ2icosθ2)z = 2\sin \dfrac{\theta }{2}\left( {\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2}} \right)
Now again we take ii as common, hence we get
z=2isinθ2(1isinθ2cosθ2)(iv)z = 2i\sin \dfrac{\theta }{2}\left( {\dfrac{1}{i}\sin \dfrac{\theta }{2} - \cos \dfrac{\theta }{2}} \right) - - (iv)
As we know the value ofi=1i = \sqrt { - 1} , so this can be written as

i2=(1)2 i2=1 1=i2  {i^2} = {\left( {\sqrt { - 1} } \right)^2} \\\ {i^2} = - 1 \\\ 1 = - {i^2} \\\

So by using this in equation (iv), we can write

z=2isinθ2(i2isinθ2cosθ2) =2isinθ2(isinθ2cosθ2)  z = 2i\sin \dfrac{\theta }{2}\left( {\dfrac{{ - {i^2}}}{i}\sin \dfrac{\theta }{2} - \cos \dfrac{\theta }{2}} \right) \\\ = 2i\sin \dfrac{\theta }{2}\left( { - i\sin \dfrac{\theta }{2} - \cos \dfrac{\theta }{2}} \right) \\\

Now we take - as common term, so we get
z=2isinθ2(cosθ2+isinθ2)(v)z = - 2i\sin \dfrac{\theta }{2}\left( {\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}} \right) - - (v)
Now we use the Euler’s equationcosx+isinx=eix\cos x + i\sin x = {e^{ix}}, hence by using this we can write equation (v) as
z=2isinθ2eiθ2z = - 2i\sin \dfrac{\theta }{2}{e^{i\dfrac{\theta }{2}}}
Now we find the argument of the obtained equation
arg(z)=arg(2isinθ2eiθ2)(vi)\arg \left( z \right) = \arg \left( { - 2i\sin \dfrac{\theta }{2}{e^{i\dfrac{\theta }{2}}}} \right) - - (vi)
As we knowarg(z1×z2)=arg(z1)+arg(z2)\arg \left( {{z_1} \times {z_2}} \right) = \arg \left( {{z_1}} \right) + \arg \left( {{z_2}} \right), so we can write the equation (vi) as
arg(z)=arg(2i)+arg(sinθ2)+arg(eiθ2)\arg \left( z \right) = \arg \left( { - 2i} \right) + \arg \left( {\sin \dfrac{\theta }{2}} \right) + \arg \left( {{e^{i\dfrac{\theta }{2}}}} \right)
This is equal to

arg(z)=π2+0+θ2 =θπ2  \arg \left( z \right) = - \dfrac{\pi }{2} + 0 + \dfrac{\theta }{2} \\\ = \dfrac{{\theta - \pi }}{2} \\\

So, the correct answer is “Option C”.

Note : Complex numbers are always written in the form of z=a+ibz = a + ibwhere aa and bbare real numbers whereas iibeing imaginary part.
We can convert a degree into radian by multiplying it by π180\dfrac{\pi }{{180}}.