Solveeit Logo

Question

Question: The amount of work done in blowing a soap bubble such that its diameter increases from d to D is (T=...

The amount of work done in blowing a soap bubble such that its diameter increases from d to D is (T= surface tension of the solution)

A

4π(D2d2)T4 \pi \left( D ^ { 2 } - d ^ { 2 } \right) T

B

8π(D2d2)T8 \pi \left( D ^ { 2 } - d ^ { 2 } \right) T

C

π(D2d2)T\pi \left( D ^ { 2 } - d ^ { 2 } \right) T

D

2π(D2d2)T2 \pi \left( D ^ { 2 } - d ^ { 2 } \right) T

Answer

2π(D2d2)T2 \pi \left( D ^ { 2 } - d ^ { 2 } \right) T

Explanation

Solution

W=T×8π(r22r12)=T×8π(D24d24)W = T \times 8 \pi \left( r _ { 2 } ^ { 2 } - r _ { 1 } ^ { 2 } \right) = T \times 8 \pi \left( \frac { D ^ { 2 } } { 4 } - \frac { d ^ { 2 } } { 4 } \right)

=2π(D2d2)T= 2 \pi \left( D ^ { 2 } - d ^ { 2 } \right) T