Solveeit Logo

Question

Question: The amount of \(\text{BaS}{{\text{O}}_{\text{4}}}\) formed upon mixing \(\text{100ml}\) of \[\text{2...

The amount of BaSO4\text{BaS}{{\text{O}}_{\text{4}}} formed upon mixing 100ml\text{100ml} of 20.8 !!\text{20}\text{.8 }\\!\\!%\\!\\!\text{ }\,\text{BaC}{{\text{l}}_{\text{2}}} solution with 50ml\text{50ml} of 9.8 !!\text{9}\text{.8 }\\!\\!%\\!\\!\text{ }\,{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}} solution will be:(given the molecular weight of Ba =137,Cl =35.5,S =32,H =1andO =16gm/mol\text{Ba =137,}\,\text{Cl =35}\text{.5,}\,\text{S =32,}\,\text{H =1}\,\text{and}\,\text{O =16gm/mol})
(A) 23.3gm\text{23}\text{.3gm}
(B) 11.65gm\text{11}\text{.65gm}
(C) 30.6gm\text{30}\text{.6gm}
(D) 33.2gm\text{33}\text{.2gm}

Explanation

Solution

Percentage by weight (w/W) is the mass of solute present in the given mass of solution, this is known as the weight fraction of solute.
massfaction=wW+wwhere;w=weightofsolute W=weightofsolvent \begin{aligned} & \text{mass}\,\text{faction}\,\text{=}\dfrac{\text{w}}{\text{W+w}}\,\,\text{where}\,\text{;}\,\text{w=}\,\text{weight}\,\text{of}\,\text{solute} \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{W=weight}\,\text{of}\,\text{solvent} \\\ \end{aligned}
% concentration (w/W) is generally defined x gram of solute is present in the 100gm of solution.

Complete answer:
To calculate the weight of BaSO4\text{BaS}{{\text{O}}_{\text{4}}} firstly we will calculate the number of moles of each reactant in the solution.
For 20.8 !!\text{20}\text{.8 }\\!\\!%\\!\\!\text{ }\,\text{BaC}{{\text{l}}_{\text{2}}} means 20.8gm\text{20}\text{.8gm} of BaCl2\text{BaC}{{\text{l}}_{\text{2}}} is dissolved in 89.2gm89.\text{2gm} of water.
Since 100ml =100gm\text{100ml =100gm} so, amount of BaCl2\text{BaC}{{\text{l}}_{\text{2}}} present in the 100gm of water solution will be-
From unitary method
if 89.2gm\text{89}\text{.2gm}of contains = 20.8gm\text{20}\text{.8gm} of BaCl2\text{BaC}{{\text{l}}_{\text{2}}}
1gm\text{1gm}of water will contain = 20.889.2gm\dfrac{20.8}{89.2}gmof BaCl2\text{BaC}{{\text{l}}_{\text{2}}}
100gm\text{100gm} of water will contains =20.889.2 !!×!! 100gm\dfrac{\text{20}\text{.8}}{\text{89}\text{.2}}\text{ }\\!\\!\times\\!\\!\text{ 100}\,\text{gm}
= 23.32gm\text{23}\text{.32gm}
Thus number of mole of BaCl2\text{BaC}{{\text{l}}_{\text{2}}} mole(n) =massmolarmass\text{mole(n) =}\,\dfrac{\text{mass}}{\text{molar}\,\text{mass}} 23.32208=0.112moles\dfrac{23.32}{208}=\,\,0.112\,\text{moles}
In the same way we will calculate the moles forH2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}-
9.8% H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}means 9.8gm\text{9}\text{.8gm} of H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}} is dissolved in 90.2gm\text{90}\text{.2gm} of water.
Since 50ml = 50gm\text{50ml = 50gm} so, amount ofH2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}present in the 50gm of water solution
From unitary method
if 90.2gm\text{90}\text{.2gm} of contains = 9.8gm\text{9}\text{.8gm} of H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}
1gm\text{1gm}of water will contain = 9.890.2gm\dfrac{9.8}{90.2}gmof H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}
50gm\text{50gm} of water will contains =9.890.2 !!×!! 50gm\dfrac{\text{9}\text{.8}}{\text{90}\text{.2}}\text{ }\\!\\!\times\\!\\!\text{ 50}\,\text{gm}
= 5.43gm\text{5}\text{.43gm} H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}
Thus number of mole of H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}} mole(n) =massmolarmass....(1)\text{mole(n) =}\,\dfrac{\text{mass}}{\text{molar}\,\text{mass}}....(1)
n=5.4398n=\dfrac{5.43}{98} =0.0554 moles\text{=}\,\text{0}\text{.0554 moles}
The overall reaction is the solution is H2SO4+BaCl2BaSO4+2HCl{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}\,\text{+}\,\text{BaC}{{\text{l}}_{\text{2}}}\,\,\to \,\,\text{BaS}{{\text{O}}_{\text{4}}}\,\text{+}\,\text{2HCl}
Since H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}} is the limiting quantity so it will be the limiting reagent
So, 0.055 moles\text{0}\text{.055 moles}of H2SO4{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}} will react with the 0.055 moles\text{0}\text{.055 moles}ofBaCl2\text{BaC}{{\text{l}}_{\text{2}}} and it will form 0.055 moles\text{0}\text{.055 moles} of BaSO4\text{BaS}{{\text{O}}_{\text{4}}}.To calculate the weight of BaSO4\text{BaS}{{\text{O}}_{\text{4}}} we will apply mole formula. So, after putting the value of the number of moles and molar mass of BaSO4\text{BaS}{{\text{O}}_{\text{4}}} in the e.q…. (1)
mole(n) =massmolarmass....(1)\text{mole(n) =}\,\dfrac{\text{mass}}{\text{molar}\,\text{mass}}....(1)
0.055=weight/mass233 weight of BaSO4 =12.8gm \begin{aligned} & \text{0}\text{.055=}\dfrac{\text{weight/mass}}{\text{233}} \\\ & \text{weight of BaS}{{\text{O}}_{4}}\text{ =12}\text{.8gm} \\\ \end{aligned}

So, option (B) will be the correct answer.

Note:
Limiting reagent is the reagent that is entirely consumed when a reaction goes to completion. If mass of the two or more reactants are given, the amount of product formed depends upon the amount of limiting reagent.