Solveeit Logo

Question

Physics Question on Kinetic molecular theory of gases

The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from T1KT_1 K to T2KT_2 K is :

A

34NakB(T2T1) \frac{3}{4} N_a k_B \left( \frac{T_2}{T_1} \right)

B

38NakB(T2T1) \frac{3}{8} N_a k_B \left( T_2 - T_1 \right)

C

32NakB(T2T1) \frac{3}{2} N_a k_B \left( T_2 - T_1 \right)

D

34NakB(T2T1) \frac{3}{4} N_a k_B \left( T_2 - T_1 \right)

Answer

38NakB(T2T1) \frac{3}{8} N_a k_B \left( T_2 - T_1 \right)

Explanation

Solution

Number of moles in1gHe=141g\,\, He = \frac{1}{4}
Amount of heat energy required to raise its
temepratre from T1KtoT2KT_1K\,\, to\,\, T_2K
=nCvΔT= nC_v \Delta T
=(14)(32R)(T2T1)= \left(\frac {1}{4}\right) \left(\frac {3}{2} R\right) (T_2 - T_1)
=38kBNA(T2T1)= \frac {3}{8} k_BN_A(T_2 - T_1)