Solveeit Logo

Question

Question: The adjoining diagram shows the spectral energy density distribution \(E_{\lambda}\)of a black body ...

The adjoining diagram shows the spectral energy density distribution EλE_{\lambda}of a black body at two different temperatures. If the areas under the curves are in the ratio 16 : 1, the value of temperature T is

A

32,000 K

B

16,000 K

C

8,000 K

D

4,000 K

Answer

4,000 K

Explanation

Solution

Area under curve represents the emissive power of the body ETE2000=ATA2000=161\frac{E_{T}}{E_{2000}} = \frac{A_{T}}{A_{2000}} = \frac{16}{1} (given) ….(i)

But from Stefan's law E ∝ T4ETE2000=(T2000)4\frac{E_{T}}{E_{2000}} = \left( \frac{T}{2000} \right)^{4} ...(ii)

From (i) and (ii) (T2000)4=161\left( \frac{T}{2000} \right)^{4} = \frac{16}{1}T2000=2\frac{T}{2000} = 2

⇒ T = 4000K.