Solveeit Logo

Question

Question: The adjacent figure shows charged spherical shells A, B and C having charge densities $\sigma$, -$\s...

The adjacent figure shows charged spherical shells A, B and C having charge densities σ\sigma, -σ\sigma, σ\sigma and radii a, b, c respectively. If VAV_A=VCV_C then c is equal to (in m) (assuming a = 0.10m, b = 0.20 m)

Answer

0.30

Explanation

Solution

The potential at the surface of a charged spherical shell of radius RR and charge QQ is given by V=14πϵ0QRV = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}. The potential at a distance rr from the center due to a charged spherical shell of radius RR and charge QQ is 14πϵ0Qr\frac{1}{4\pi\epsilon_0} \frac{Q}{r} for rRr \ge R and 14πϵ0QR\frac{1}{4\pi\epsilon_0} \frac{Q}{R} for rRr \le R.

The charges on the shells A, B, and C are QA=4πa2σQ_A = 4\pi a^2 \sigma, QB=4πb2(σ)Q_B = 4\pi b^2 (-\sigma), and QC=4πc2σQ_C = 4\pi c^2 \sigma, respectively.

The potential at the surface of shell A (r=ar=a) is the sum of the potentials due to shells A, B, and C at r=ar=a.

VA=VA on A+VB on A+VC on AV_A = V_{A \text{ on } A} + V_{B \text{ on } A} + V_{C \text{ on } A}

VA on A=14πϵ0QAa=14πϵ04πa2σa=σaϵ0V_{A \text{ on } A} = \frac{1}{4\pi\epsilon_0} \frac{Q_A}{a} = \frac{1}{4\pi\epsilon_0} \frac{4\pi a^2 \sigma}{a} = \frac{\sigma a}{\epsilon_0}

Since a<ba < b, the potential due to shell B at r=ar=a is the same as the potential on the surface of B.

VB on A=14πϵ0QBb=14πϵ04πb2σb=σbϵ0V_{B \text{ on } A} = \frac{1}{4\pi\epsilon_0} \frac{Q_B}{b} = \frac{1}{4\pi\epsilon_0} \frac{-4\pi b^2 \sigma}{b} = -\frac{\sigma b}{\epsilon_0}

Since a<ca < c, the potential due to shell C at r=ar=a is the same as the potential on the surface of C.

VC on A=14πϵ0QCc=14πϵ04πc2σc=σcϵ0V_{C \text{ on } A} = \frac{1}{4\pi\epsilon_0} \frac{Q_C}{c} = \frac{1}{4\pi\epsilon_0} \frac{4\pi c^2 \sigma}{c} = \frac{\sigma c}{\epsilon_0}

So, VA=σaϵ0σbϵ0+σcϵ0=σϵ0(ab+c)V_A = \frac{\sigma a}{\epsilon_0} - \frac{\sigma b}{\epsilon_0} + \frac{\sigma c}{\epsilon_0} = \frac{\sigma}{\epsilon_0} (a - b + c).

The potential at the surface of shell C (r=cr=c) is the sum of the potentials due to shells A, B, and C at r=cr=c.

VC=VA on C+VB on C+VC on CV_C = V_{A \text{ on } C} + V_{B \text{ on } C} + V_{C \text{ on } C}

Since c>ac > a, the potential due to shell A at r=cr=c is the same as the potential at a distance cc from the center.

VA on C=14πϵ0QAc=14πϵ04πa2σc=σa2ϵ0cV_{A \text{ on } C} = \frac{1}{4\pi\epsilon_0} \frac{Q_A}{c} = \frac{1}{4\pi\epsilon_0} \frac{4\pi a^2 \sigma}{c} = \frac{\sigma a^2}{\epsilon_0 c}

Since c>bc > b, the potential due to shell B at r=cr=c is the same as the potential at a distance cc from the center.

VB on C=14πϵ0QBc=14πϵ04πb2σc=σb2ϵ0cV_{B \text{ on } C} = \frac{1}{4\pi\epsilon_0} \frac{Q_B}{c} = \frac{1}{4\pi\epsilon_0} \frac{-4\pi b^2 \sigma}{c} = -\frac{\sigma b^2}{\epsilon_0 c}

VC on C=14πϵ0QCc=14πϵ04πc2σc=σcϵ0V_{C \text{ on } C} = \frac{1}{4\pi\epsilon_0} \frac{Q_C}{c} = \frac{1}{4\pi\epsilon_0} \frac{4\pi c^2 \sigma}{c} = \frac{\sigma c}{\epsilon_0}

So, VC=σa2ϵ0cσb2ϵ0c+σcϵ0=σϵ0(a2b2c+c)V_C = \frac{\sigma a^2}{\epsilon_0 c} - \frac{\sigma b^2}{\epsilon_0 c} + \frac{\sigma c}{\epsilon_0} = \frac{\sigma}{\epsilon_0} \left( \frac{a^2 - b^2}{c} + c \right).

Given VA=VCV_A = V_C:

σϵ0(ab+c)=σϵ0(a2b2c+c)\frac{\sigma}{\epsilon_0} (a - b + c) = \frac{\sigma}{\epsilon_0} \left( \frac{a^2 - b^2}{c} + c \right)

Assuming σ0\sigma \neq 0, we can cancel σϵ0\frac{\sigma}{\epsilon_0}:

ab+c=a2b2c+ca - b + c = \frac{a^2 - b^2}{c} + c

ab=a2b2ca - b = \frac{a^2 - b^2}{c}

c(ab)=a2b2c(a - b) = a^2 - b^2

c(ab)=(ab)(a+b)c(a - b) = (a - b)(a + b)

Since the radii are distinct (a<b<ca < b < c), aba \neq b, so ab0a - b \neq 0. We can divide by (ab)(a - b):

c=a+bc = a + b

We are given a=0.10ma = 0.10 \, \text{m} and b=0.20mb = 0.20 \, \text{m}.

c=0.10m+0.20m=0.30mc = 0.10 \, \text{m} + 0.20 \, \text{m} = 0.30 \, \text{m}.