Solveeit Logo

Question

Physics Question on Escape Speed

The additional kinetic energy to be provided to a satellite of mass mm revolving around a planet of mass MM to transfer it from a circular orbit of radius R1R_1 to another of radius R2R_2 (R2>R1)(R_2 > R_1) is

A

GmM(1R121R22)GmM\left(\frac{1}{R^{2}_{1}}-\frac{1}{R^{2}_{2}}\right)

B

GmM(1R11R2)GmM\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)

C

2GmM(1R11R2)2GmM\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)

D

12GmM(1R11R2)\frac{1}{2}GmM\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)

Answer

12GmM(1R11R2)\frac{1}{2}GmM\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)

Explanation

Solution

AsGMm2R1+KE=GMm2R2-\frac{GMm}{2R_{1}}+KE=\frac{-GMm}{2R_{2}}
KE=12GMm(1R11R2).\quad\quad\quad\therefore\quad KE=\frac{1}{2}GMm\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right).