Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The acute angle between the planes P 1 and P 2, when P 1 and P 2 are the planes passing through the intersection of the planes 5 x + 8 y + 13 z - 29 = 0 and 8 x - 7 y + z - 20 = 0 and the points (2, 1, 3) and (0, 1, 2), respectively, is

A

π3\frac{π}{3}

B

π4\frac{π}{4}

C

π6\frac{π}{6}

D

π12\frac{π}{12}

Answer

π3\frac{π}{3}

Explanation

Solution

The correct answer is (A) : π3\frac{π}{3}
Family of Plane’s equation can be given by
(5 + 8λ)x + (8 – 7λ)y + (13 + λ) z – (29 + 20λ) = 0
P 1 passes through (2, 1, 3)
⇒ (10 + 16λ) + (8 – 7λ) + (39 + 3λ) – (29 + 20λ) = 0
⇒ –8λ + 28 = 0
λ=72⇒ λ =\frac{7}{2}
d.r,s of normal to P 1
33,332,332or1,12,12⟨33, \frac{−33}{2} ,\frac{33}{2}⟩ or ⟨1, \frac{−1}{2}, \frac{1}{2}⟩
P 2 passes through (0, 1, 2)
8 – 7λ + 26 + 2λ – (29 + 20λ) = 0
5 – 25λ = 0
λ=15⇒ λ = \frac{1}{5}
d.r, s of normal to P 2
335,335,665or1,1,2⟨ \frac{33}{5} ,\frac{33}{5}, \frac{66}{5}⟩ or ⟨1, 1, 2⟩
Angle between normals
=(i^12j^+12k^).(i^+j^+2k^)326= \frac{( \hat{i} -\frac{1}{2}\hat{j} + \frac{1}{2}\hat{k} ) . ( \hat{i} + \hat{j} + 2\hat{k} )}{ \frac{\sqrt{3}}{2} \hspace{1cm}\sqrt6}
cosθ=112+13=12cosθ = \frac{1 -\frac{1}{2} + 1}{3} = \frac{1}{2}
θ=π3θ = \frac{π}{3}