Solveeit Logo

Question

Mathematics Question on Ellipse

The acute angle between the pair of tangents drawn to the ellipse 2x2 + 3y2 = 5 from the point (1, 3) is

A

tan1(1675)\tan^{-1}(\frac{16}{7\sqrt5})

B

tan1(2475)\tan^{-1}(\frac{24}{7\sqrt{5}})

C

tan1(3275)\tan^{-1}(\frac{32}{7\sqrt5})

D

tan1(3+8535)\tan^{-1}(\frac{3+8\sqrt5}{35})

Answer

tan1(2475)\tan^{-1}(\frac{24}{7\sqrt{5}})

Explanation

Solution

The correct answer is (B) : tan1(2475)\tan^{-1}(\frac{24}{7\sqrt{5}})
2 x 2 + 3 y 2 = 5
Equation of tangent having slope m.
y=mx±52m2+53y=mx±\sqrt{\frac{5}{2}m^2+\frac{5}{3}}
which passes through (1, 3)
3=m±52m2+533=m±\sqrt{\frac{5}{2}m^2+\frac{5}{3}}
52m2+53=9+m26m\frac{5}{2}m^2+\frac{5}{3}=9+m^2−6m
32m2+6m223=0\frac{3}{2}m^2+6m−\frac{22}{3}=0
9m2+36m44=09m^2+36m−44=0
m1+m2=4,m1m2=449m_1+m_2=−4,m_1m_2=−\frac{44}{9}
(m1m2)2=16+4×449=3209(m_1−m_2)^2=16+4×\frac{44}{9}=\frac{320}{9}
Acute angle between the tangents is given by
α=tan1m1m21+m1m2α=\tan^{−1}⁡|\frac{m_1−m_2}{1+m_1m_2}|
=tan18531449= \tan^{-1} |\frac{\frac{8\sqrt5}{3}}{1-\frac{44}{9}}|
=tan1(24535)= \tan^{-1} (\frac{24\sqrt5}{35})
α=tan1(2475)α = \tan^{-1}(\frac{24}{7\sqrt5})