Solveeit Logo

Question

Question: The acute angle between the line joining the points (2,1,–3), (–3,1,7) and a line parallel to \(\fra...

The acute angle between the line joining the points (2,1,–3), (–3,1,7) and a line parallel to x13=\frac { x - 1 } { 3 } = y4=z+35\frac { y } { 4 } = \frac { z + 3 } { 5 } through the point (–1, 0, 4) is

A

cos1(7510)\cos ^ { - 1 } \left( \frac { 7 } { 5 \sqrt { 10 } } \right)

B

cos1(110)\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { 10 } } \right)

C

cos1(3510)\cos ^ { - 1 } \left( \frac { 3 } { 5 \sqrt { 10 } } \right)

D

cos1(1510)\cos ^ { - 1 } \left( \frac { 1 } { 5 \sqrt { 10 } } \right)

Answer

cos1(7510)\cos ^ { - 1 } \left( \frac { 7 } { 5 \sqrt { 10 } } \right)

Explanation

Solution

Direction ratio of the line joining the point (2,1,3)( 2,1 , - 3 ) (3,1,7)( - 3,1,7 ) are (a1,b1,c1)\left( a _ { 1 } , b _ { 1 } , c _ { 1 } \right)

(32,11,7(3))(5,0,10)\Rightarrow ( - 3 - 2,1 - 1,7 - ( - 3 ) ) \Rightarrow ( - 5,0,10 )

Direction ratio of the line parallel to line x13=y4=z+35\frac { x - 1 } { 3 } = \frac { y } { 4 } = \frac { z + 3 } { 5 } are (a2,b2,c2)(3,4,5)\left( a _ { 2 } , b _ { 2 } , c _ { 2 } \right) \Rightarrow ( 3,4,5 )

Angle between two lines,

cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \theta = \frac { a _ { 1 } a _ { 2 } + b _ { 1 } b _ { 2 } + c _ { 1 } c _ { 2 } } { \sqrt { a _ { 1 } ^ { 2 } + b _ { 1 } ^ { 2 } + c _ { 1 } ^ { 2 } } \sqrt { a _ { 2 } ^ { 2 } + b _ { 2 } ^ { 2 } + c _ { 2 } ^ { 2 } } }

cosθ=(5×3)+(0×4)+(10×5)25+0+1009+16+25\cos \theta = \frac { ( - 5 \times 3 ) + ( 0 \times 4 ) + ( 10 \times 5 ) } { \sqrt { 25 + 0 + 100 } \sqrt { 9 + 16 + 25 } }

cosθ=352510θ=cos1(7510)\cos \theta = \frac { 35 } { 25 \sqrt { 10 } } \Rightarrow \theta = \cos ^ { - 1 } \left( \frac { 7 } { 5 \sqrt { 10 } } \right) .