Solveeit Logo

Question

Question: The activity of a sample of a radioactive material is A, at time \(t_{1}\) and \(A_{2}\) at time \(t...

The activity of a sample of a radioactive material is A, at time t1t_{1} and A2A_{2} at time t2t_{2} (t2>t1).(t_{2} > t_{1}). If its mean life T, then.

A

A1t1=A2t2A_{1}t_{1} = A_{2}t_{2}

B

A1A2=t2t1A_{1} - A_{2} = t_{2} - t_{1}

C

A2=A1e(t1t2)/TA_{2} = A_{1}e^{(t_{1} - t_{2})/T}

D

A2=A1e(t1/t2)TA_{2} = A_{1}e^{(t_{1}/t_{2})T}

Answer

A2=A1e(t1t2)/TA_{2} = A_{1}e^{(t_{1} - t_{2})/T}

Explanation

Solution

A=A0eλt=A0et/τ;A = A_{0}e^{- \lambda t} = A_{0}e^{- t/\tau};

where τ=\tau =mean life

So ΔL=h2π(n2n1)\Rightarrow \Delta L = \frac{h}{2\pi}(n_{2} - n_{1})A0=A1et1/T=A1et1/TA_{0} = \frac{A_{1}}{e^{- t_{1}/T}} = A_{1}e^{t_{1}/T}

A2=A0et/T=(A1et1/T)et2/TA2=A1e(t1t2)/T\therefore A_{2} = A_{0}e^{- t/T} = (A_{1}e^{t_{1}/T})e^{- t_{2}/T} \Rightarrow A_{2} = A_{1}e^{(t_{1} - t_{2})/T}.