Solveeit Logo

Question

Question: The activity of a radioactive sample is A<sub>1</sub> at time t<sub>1</sub> and A<sub>2</sub> at tim...

The activity of a radioactive sample is A1 at time t1 and A2 at time t2. If t is average life of sample then the number of nuclei decayed in time (t2 – t1) is-

A

A1 t1 – A2 t2

B

(A1A2)2τ\frac{(A_{1} - A_{2})}{2}\tau

C

(A1 – A2) (t2 – t1)

D

(A1 – A2) t

Answer

(A1 – A2) t

Explanation

Solution

Let N0 be the initial number of nuclei, then

N1= and

\ number of nuclei decayed = N1 – N2

= = A0λ(eλ1teλ2t)\frac { \mathrm { A } _ { 0 } } { \lambda } \left( \mathrm { e } ^ { - \lambda _ { 1 } \mathrm { t } } - \mathrm { e } ^ { - \lambda _ { 2 } \mathrm { t } } \right)

= A1A2λ\frac { \mathrm { A } _ { 1 } - \mathrm { A } _ { 2 } } { \lambda } = (A1 – A2)t