Solveeit Logo

Question

Physics Question on Nuclei

The activity of a radioactive element decreases in 10 years to 1/5 of initial activity A0A_0 . After further next 10 years its activity will be

A

A04\frac{A_0}{4}

B

A010\frac{A_0}{10}

C

A015\frac{A_0}{15}

D

A025\frac{A_0}{25}

Answer

A025\frac{A_0}{25}

Explanation

Solution

\because Activity of a radioactive sample, A=A0(12)tt1/2A = A _{0}\left(\frac{1}{2}\right)^{\frac{ t }{ t _{1} / 2}} where, A0=A _{0}= initial activity. In first case, A05=A0(12)10t1/2\frac{ A _{0}}{5}= A _{0}\left(\frac{1}{2}\right)^{\frac{10}{t_{1} / 2}} 15=(12)10t1/2\frac{1}{5}=\left(\frac{1}{2}\right)^{\frac{10}{t_{1} / 2}}...(i) In second case, A=A0(12)20t1/2A = A _{0}\left(\frac{1}{2}\right)^{\frac{20}{ t _{1} / 2}}...(ii) From Eqs. (i) and (ii), we get 1/5A=(12)10t1/2A0(12)20t1/2\frac{1 / 5}{A}=\frac{\left(\frac{1}{2}\right)^{\frac{10}{t_{1} / 2}}}{A_{0}\left(\frac{1}{2}\right)^{\frac{20}{t_{1} / 2}}} 15A=1A0(12)10t1/2\Rightarrow \frac{1}{5 A}=\frac{1}{A_{0}\left(\frac{1}{2}\right)^{\frac{10}{t_{1} / 2}}} 15A=1A05\Rightarrow \frac{1}{5 A }=\frac{1}{\frac{ A _{0}}{5}} [from E (i)] A=A05×5=A025\therefore A =\frac{ A _{0}}{5 \times 5}=\frac{ A _{0}}{25}