Solveeit Logo

Question

Question: The activation energy for a reaction is 30.8 x 298 x 4.606 cal/mol. If the increase in the rate cons...

The activation energy for a reaction is 30.8 x 298 x 4.606 cal/mol. If the increase in the rate constant when its temperature is increased from 298 K to 308 K is x % then 'x' would be

Answer

900

Explanation

Solution

The problem asks us to calculate the percentage increase in the rate constant of a reaction when the temperature is raised from 298 K to 308 K, given the activation energy.

Relevant Formula: The relationship between the rate constants at two different temperatures is given by the integrated form of the Arrhenius equation:

log(k2k1)=Ea2.303R(T2T1T1T2)\log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303R} \left( \frac{T_2 - T_1}{T_1 T_2} \right)

where:

  • k1k_1 is the rate constant at temperature T1T_1
  • k2k_2 is the rate constant at temperature T2T_2
  • EaE_a is the activation energy
  • RR is the universal gas constant
  • T1T_1 and T2T_2 are the absolute temperatures in Kelvin

Given Values:

  • Activation energy, Ea=30.8×298×4.606 cal/molE_a = 30.8 \times 298 \times 4.606 \text{ cal/mol}
  • Initial temperature, T1=298 KT_1 = 298 \text{ K}
  • Final temperature, T2=308 KT_2 = 308 \text{ K}
  • Since EaE_a is in calories, we use the gas constant R=2 cal mol1 K1R = 2 \text{ cal mol}^{-1} \text{ K}^{-1}.

Calculation: Substitute the given values into the Arrhenius equation:

log(k2k1)=(30.8×298×4.606)2.303×2(308298298×308)\log \left( \frac{k_2}{k_1} \right) = \frac{(30.8 \times 298 \times 4.606)}{2.303 \times 2} \left( \frac{308 - 298}{298 \times 308} \right)

Notice that 2.303×2=4.6062.303 \times 2 = 4.606. So, the denominator term 2.303×R2.303 \times R becomes 4.6064.606.

log(k2k1)=(30.8×298×4.606)4.606(10298×308)\log \left( \frac{k_2}{k_1} \right) = \frac{(30.8 \times 298 \times 4.606)}{4.606} \left( \frac{10}{298 \times 308} \right)

The term 4.6064.606 cancels out:

log(k2k1)=(30.8×298)(10298×308)\log \left( \frac{k_2}{k_1} \right) = (30.8 \times 298) \left( \frac{10}{298 \times 308} \right)

The term 298298 cancels out:

log(k2k1)=30.8×10308\log \left( \frac{k_2}{k_1} \right) = 30.8 \times \frac{10}{308} log(k2k1)=308308\log \left( \frac{k_2}{k_1} \right) = \frac{308}{308} log(k2k1)=1\log \left( \frac{k_2}{k_1} \right) = 1

To find the ratio k2k1\frac{k_2}{k_1}, we take the antilog:

k2k1=101\frac{k_2}{k_1} = 10^1 k2k1=10\frac{k_2}{k_1} = 10

This means k2=10k1k_2 = 10k_1.

Percentage Increase: The increase in the rate constant is k2k1k_2 - k_1. The percentage increase is calculated as:

Percentage increase=k2k1k1×100%\text{Percentage increase} = \frac{k_2 - k_1}{k_1} \times 100\%

Substitute k2=10k1k_2 = 10k_1:

Percentage increase=10k1k1k1×100%\text{Percentage increase} = \frac{10k_1 - k_1}{k_1} \times 100\% Percentage increase=9k1k1×100%\text{Percentage increase} = \frac{9k_1}{k_1} \times 100\% Percentage increase=9×100%\text{Percentage increase} = 9 \times 100\% Percentage increase=900%\text{Percentage increase} = 900\%

The question states that the increase in the rate constant is x %. Therefore, x = 900.

The final answer is 900\boxed{900}.

Solution: The Arrhenius equation for two temperatures is log(k2k1)=Ea2.303R(T2T1T1T2)\log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303R} \left( \frac{T_2 - T_1}{T_1 T_2} \right). Given Ea=30.8×298×4.606 cal/molE_a = 30.8 \times 298 \times 4.606 \text{ cal/mol}, T1=298 KT_1 = 298 \text{ K}, T2=308 KT_2 = 308 \text{ K}, and R=2 cal mol1 K1R = 2 \text{ cal mol}^{-1} \text{ K}^{-1}. Substitute these values: log(k2k1)=(30.8×298×4.606)2.303×2(308298298×308)\log \left( \frac{k_2}{k_1} \right) = \frac{(30.8 \times 298 \times 4.606)}{2.303 \times 2} \left( \frac{308 - 298}{298 \times 308} \right) Since 2.303×2=4.6062.303 \times 2 = 4.606: log(k2k1)=(30.8×298×4.606)4.606(10298×308)\log \left( \frac{k_2}{k_1} \right) = \frac{(30.8 \times 298 \times 4.606)}{4.606} \left( \frac{10}{298 \times 308} \right) log(k2k1)=(30.8×298)(10298×308)\log \left( \frac{k_2}{k_1} \right) = (30.8 \times 298) \left( \frac{10}{298 \times 308} \right) log(k2k1)=30.8×10308=308308=1\log \left( \frac{k_2}{k_1} \right) = \frac{30.8 \times 10}{308} = \frac{308}{308} = 1 Therefore, k2k1=101=10\frac{k_2}{k_1} = 10^1 = 10. The percentage increase is k2k1k1×100%=10k1k1k1×100%=9k1k1×100%=900%\frac{k_2 - k_1}{k_1} \times 100\% = \frac{10k_1 - k_1}{k_1} \times 100\% = \frac{9k_1}{k_1} \times 100\% = 900\%. So, 'x' is 900.