Solveeit Logo

Question

Question: The acceleration of block B in the figure will be...

The acceleration of block B in the figure will be

A

m2g(4m1+m2)\frac { m _ { 2 } g } { \left( 4 m _ { 1 } + m _ { 2 } \right) }

B

2m2g(4m1+m2)\frac { 2 m _ { 2 } g } { \left( 4 m _ { 1 } + m _ { 2 } \right) }

C

2m1g(m1+4m2)\frac { 2 m _ { 1 } g } { \left( m _ { 1 } + 4 m _ { 2 } \right) }

D

2m1g(m1+m2)\frac { 2 m _ { 1 } g } { \left( m _ { 1 } + m _ { 2 } \right) }

Answer

m2g(4m1+m2)\frac { m _ { 2 } g } { \left( 4 m _ { 1 } + m _ { 2 } \right) }

Explanation

Solution

When the block m2m _ { 2 } moves downward with acceleration a, the acceleration of mass m1m _ { 1 } will be m2m _ { 2 }.

Let T is the tension in the string.

By drawing the free body diagram of A and B

T=m12aT = m _ { 1 } 2 a ……..(i)

m2g2T=m2am _ { 2 } g - 2 T = m _ { 2 } a ……..(ii)

by solving (i) and (ii)

a=m2g(4m1+m2)a = \frac { m _ { 2 } g } { \left( 4 m _ { 1 } + m _ { 2 } \right) }