Solveeit Logo

Question

Question: The acceleration of a particle is given by \[a = {t^3} - 3{t^2} + 5\], where a is in \(m/s^2\) and t...

The acceleration of a particle is given by a=t33t2+5a = {t^3} - 3{t^2} + 5, where a is in m/s2m/s^2 and t is in second. At t=1s{{t = 1s}}, the displacement and velocity are 8.30m8.30{{ }}m and 6.25ms16.25{{ }}m{s^{ - 1}}, respectively. Calculate the displacement and velocity at t=2st = 2s.

Explanation

Solution

Through the integration of the acceleration we can get a velocity equation with a constant c. To find the value of c, substitute the value of velocity at t=1s{{t = 1s}} then we can get the value of c.
We have to substitute the value of c to find the velocity at t=2st = 2s. As per question, displacement can be determined by integrating the velocity.
We have to integrate the velocity equation which we have used in the beginning. Through integrating the velocity equation at t=1s{{t = 1s}}, we can get the value of c.
Substitute the value of c at t=2s{{t = 2s}}, we can get displacement s.

Complete step by step answer:
According to question we have, a=t33t2+5a = {t^3} - 3{t^2} + 5
Now we can get the velocity through the integration of acceleration
a=dvdtv=adt{{a = }}\dfrac{{dv}}{{dt}} \Rightarrow {{v = }}\int {{{a }}dt}
v=(t33t2+5)dt\Rightarrow {{v = }}\int {{{(}}{t^3} - 3{t^2} + 5){{ }}dt}
Putting the value of aa and we get,
(t3)dt(3t2)dt+(5)dt\Rightarrow \int {\left( {{t^3}} \right)} dt - \int {\left( {3{t^2}} \right)} dt + \int {\left( 5 \right)dt}
On integration we get,
v=t443t33+5t+c\Rightarrow {{v}} = \dfrac{{{t^4}}}{4} - \dfrac{{3{t^3}}}{3} + 5t + {{c}}
At t=1st = 1s the velocity is6.25ms16.25{{ }}m{s^{ - 1}}.
By substituting the values we can get the value of cc.
6.25=1443(1)33+5(1)+c\Rightarrow 6.25 = \dfrac{{{1^4}}}{4} - \dfrac{{3{{(1)}^3}}}{3} + 5(1) + {{c}}
On simplification we get,
c=6.25+150.25\Rightarrow {{c = }}6.25 + 1 - 5 - 0.25
Let us subtracting the decimal values and we get,
c=75\Rightarrow {{c = 7}} - 5
On subtract we get,
c=2\Rightarrow c = 2
Now, we have to find the velocity at t=2s{{t = 2s}}.
v=2443(2)33+5(2)+2\Rightarrow {{v}} = \dfrac{{{2^4}}}{4} - \dfrac{{3{{(2)}^3}}}{3} + 5(2) + 2
On squaring the values and we get
v=1643×83+5(2)+2\Rightarrow {{v}} = \dfrac{{16}}{4} - \dfrac{{3 \times 8}}{3} + 5(2) + 2
On cancel the terms and multiply we get,
v=48+10+2\Rightarrow {{v}} = 4 - 8 + 10 + 2
Let us solve some calculation we get,
Vt=2s=8m/sec\Rightarrow {{{V}}_{{{t = 2s}}}} = {{ }}8{{ }}m/sec
The displacement can be determined by integrating the velocity.
v=dsdt\Rightarrow {{v = }}\dfrac{{ds}}{{dt}}
Taking integration on both sides we get
s=vdt\Rightarrow {{s = }}\int {{{v }}dt}
Putting the value and we get,
s=(t443t33+5t+2)dt\Rightarrow {{s = }}\int {\left( {\dfrac{{{t^4}}}{4} - \dfrac{{3{t^3}}}{3} + 5t + 2} \right){{ }}dt}
On splitting the integral
(t44)dt(3t33)dt+(5t)dt+(2)dt\Rightarrow \int {\left( {\dfrac{{{t^4}}}{4}} \right)dt - \int {\left( {\dfrac{{3{t^3}}}{3}} \right)dt + \int {\left( {5t} \right)dt + \int {\left( 2 \right)dt} } } }
On doing some integration we get
s=t520t44+5t22+2t+c\Rightarrow {{s =}}\dfrac{{{t^5}}}{{20}} - \dfrac{{{t^4}}}{4} + \dfrac{{5{t^2}}}{2} + 2t + {{c}}
At t=1st = 1s the displacement is8.30m8.30{{ }}m. By substituting the values we can get the value of c.
8.30=12014+52+2+c\Rightarrow {{8}}{{.30 =}}\dfrac{1}{{20}} - \dfrac{1}{4} + \dfrac{5}{2} + 2 + {{c}}
On doing some simplification we get,
c=8.300.05+0.252.52=4\Rightarrow {{c = 8}}{{.30}} - 0.05 + 0.25 - 2.5 - 2 = 4
At t=2st = 2swe have to find the displacement.
s=2520244+5(2)22+2(2)+4\Rightarrow {{s = }}\dfrac{{{2^5}}}{{20}} - \dfrac{{{2^4}}}{4} + \dfrac{{5{{(2)}^2}}}{2} + 2(2) + 4
On squaring the value and we get
s=3220164+5×42+2(2)+4\Rightarrow {{s = }}\dfrac{{32}}{{20}} - \dfrac{{16}}{4} + \dfrac{{5 \times 4}}{2} + 2(2) + 4
On doing some simplification we get
s=854+10+4+4\Rightarrow {{s = }}\dfrac{8}{5} - 4 + 10 + 4 + 4
On cancel the term we get,
s=1.6+14\Rightarrow {{s}} = 1.6 + 14
On adding we get
s=15.6m\Rightarrow s = 15.6{{m}}
So the displacement and velocity at time t=2st{{ }} = {{ }}2sis
V=  8m/sec\Rightarrow V = \;8{{ }}m/sec
s=15.6m\Rightarrow s = 15.6{{ }}m

Note: The first derivative of velocity with respect to time is called acceleration.
a=dvdta = \dfrac{{dv}}{{dt}}
(a)dt=dv\left( a \right)dt = dv
v=(a)dtv = \int {\left( a \right)dt} , where v=v = velocity, a=a = acceleration
The first derivative of position with respect to time is called displacement.
v=dsdtv = \dfrac{{ds}}{{dt}}
(v)dt=ds\left( v \right)dt = ds
s=(v)dts = \int {\left( v \right)dt} , where v=v = velocity and s=s = displacement