Solveeit Logo

Question

Question: The acceleration due to gravity at the poles and the equator is![](https://cdn.pureessence.tech/canv...

The acceleration due to gravity at the poles and the equator isand respectively. If the earth is a sphere of radius and rotating about its axis with angular speed , then gpge\mathrm { g } _ { \mathrm { p } } - \mathrm { g } _ { \mathrm { e } } is given by

A

B

ω2RE2\frac { \omega ^ { 2 } } { R _ { E } ^ { 2 } }

C

ω2RE2\omega ^ { 2 } R _ { E } ^ { 2 }

D

ω2RE\omega ^ { 2 } R _ { E }

Answer

ω2RE\omega ^ { 2 } R _ { E }

Explanation

Solution

Accelerations due to gravity at a place of latitude λ\lambdadue to the rotation of earth is

g=gREω2cos2λg ^ { \prime } = g - R _ { E } \omega ^ { 2 } \cos ^ { 2 } \lambda

At equator, λ=0,cos0=1\lambda = 0 ^ { \circ } , \cos 0 ^ { \circ } = 1

g=ge=gREω2\therefore \quad \mathrm { g } ^ { \prime } = \mathrm { g } _ { \mathrm { e } } = \mathrm { g } - \mathrm { R } _ { \mathrm { E } } \omega ^ { 2 }

At poles, λ=90,cos90=0\lambda = 90 ^ { \circ } , \cos 90 ^ { \circ } = 0

\therefore

\therefore