Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The absolute minimum value, of the function f(x)=x2x+1+[x2x+1]f(x)=\left|x^2-x+1\right|+\left[x^2-x+1\right], where [t][t] denotes the greatest integer function, in the interval [1,2][-1,2], is:

A

32\frac{3}{2}

B

14\frac{1}{4}

C

54\frac{5}{4}

D

34\frac{3}{4}

Answer

34\frac{3}{4}

Explanation

Solution

f(x)=∣∣​x2−x+1∣∣​+[x2−x+1];x∈[−1,2]
Let g(x)=x2−x+1
=(x−21​)2+43​
∵∣∣​x2−x+1∣∣​ and [x2−x+2]
Both have minimum value at x=1/2
⇒ Minimum f(x)=43​+0
=43​
So, the correct option is (D) : 34\frac{3}{4}