Solveeit Logo

Question

Question: The abscissas of two points A and B are the roots of the equations \(x^{2} + 2ax - b^{2} = 0\) and t...

The abscissas of two points A and B are the roots of the equations x2+2axb2=0x^{2} + 2ax - b^{2} = 0 and their ordinates are the roots of the circle with AB as diameter is

A

(a2+b2+p2+q2)\sqrt{\left( a^{2} + b^{2} + p^{2} + q^{2} \right)}

B

(a2+p2)\sqrt{\left( a^{2} + p^{2} \right)}

C

(b2+q2)\sqrt{\left( b^{2} + q^{2} \right)}

D

None of these

Answer

(a2+b2+p2+q2)\sqrt{\left( a^{2} + b^{2} + p^{2} + q^{2} \right)}

Explanation

Solution

Let co-ordinates of A and B are (α, β) and ( γ, δ) respectively. α+γ=2a,αγ=b2\alpha + \gamma = - 2a,\alpha\gamma = - b^{2} and

β+δ=ap,βδ=q2\beta + \delta = - ap,\beta\delta = - q^{2}

Equation of circle with AB as diameter.

(xα)(xγ)+(yβ)(yδ)=0(x - \alpha)(x - \gamma) + (y - \beta)(y - \delta) = 0

x2+y2x(α+γ)y(β+δ)+αγ+βδ=0x^{2} + y^{2} - x(\alpha + \gamma) - y(\beta + \delta) + \alpha\gamma + \beta\delta = 0

x2+y2+2ax+2pyb2q2=09x^{2} + y^{2} + 2ax + 2py - b^{2} - q^{2} = 09

\thereforeRadius = (a2+p2+b2+q2)\sqrt{\left( a^{2} + p^{2} + b^{2} + q^{2} \right)}

=(a2+b2+p2+q2)\sqrt{\left( a^{2} + b^{2} + p^{2} + q^{2} \right)}