Solveeit Logo

Question

Question: The 2nd, 3rd and 4th terms in the expansion of $(x + a)^n$ are 240, 720 and 1080, respectively. The...

The 2nd, 3rd and 4th terms in the expansion of (x+a)n(x + a)^n are 240, 720 and 1080, respectively.

The value of (xa)n(x – a)^n can be The sum of odd-numbered terms is

A

64

B

-1

C

-32

D

None of these

E

1664

F

2376

G

1562

H

1486

Answer

(B) -1 and (C) 1562

Explanation

Solution

Given: T2=240T_2 = 240 T3=720T_3 = 720 T4=1080T_4 = 1080

Using ratios of consecutive terms: T3T2=(n2)xn2a2(n1)xn1a1=n12ax=720240=3\frac{T_3}{T_2} = \frac{\binom{n}{2}x^{n-2}a^2}{\binom{n}{1}x^{n-1}a^1} = \frac{n-1}{2}\frac{a}{x} = \frac{720}{240} = 3 (1) T4T3=(n3)xn3a3(n2)xn2a2=n23ax=1080720=32\frac{T_4}{T_3} = \frac{\binom{n}{3}x^{n-3}a^3}{\binom{n}{2}x^{n-2}a^2} = \frac{n-2}{3}\frac{a}{x} = \frac{1080}{720} = \frac{3}{2} (2)

Dividing (1) by (2): n12axn23ax=33/2\frac{\frac{n-1}{2}\frac{a}{x}}{\frac{n-2}{3}\frac{a}{x}} = \frac{3}{3/2} 3(n1)2(n2)=2\frac{3(n-1)}{2(n-2)} = 2 3(n1)=4(n2)3(n-1) = 4(n-2) 3n3=4n83n - 3 = 4n - 8 n=5n = 5

Substitute n=5n=5 into (1): 512ax=3\frac{5-1}{2}\frac{a}{x} = 3 2ax=3    ax=322\frac{a}{x} = 3 \implies \frac{a}{x} = \frac{3}{2}

Now, use T2=(51)x51a1=5x4a=240T_2 = \binom{5}{1}x^{5-1}a^1 = 5x^4a = 240. Substitute a=32xa = \frac{3}{2}x: 5x4(32x)=2405x^4(\frac{3}{2}x) = 240 152x5=240\frac{15}{2}x^5 = 240 x5=240×215=16×2=32x^5 = 240 \times \frac{2}{15} = 16 \times 2 = 32 x=2x = 2

Then a=32x=32(2)=3a = \frac{3}{2}x = \frac{3}{2}(2) = 3.

First part: (xa)n=(23)5=(1)5=1(x-a)^n = (2-3)^5 = (-1)^5 = -1.

Second part: Sum of odd-numbered terms is 12[(x+a)n+(xa)n]\frac{1}{2}[(x+a)^n + (x-a)^n]. Sum = 12[(2+3)5+(23)5]\frac{1}{2}[(2+3)^5 + (2-3)^5] Sum = 12[55+(1)5]\frac{1}{2}[5^5 + (-1)^5] Sum = 12[31251]\frac{1}{2}[3125 - 1] Sum = 31242=1562\frac{3124}{2} = 1562.