Solveeit Logo

Question

Mathematics Question on Sequence and series

The 100th100^{th} term of the sequence 1,2,2,3,3,3,4,4,4,4,1, 2, 2, 3, 3, 3, 4, 4, 4, 4, \dots, is

A

12

B

13

C

14

D

15

Answer

14

Explanation

Solution

Given sequence is 1,2,2,3,3,3,4,4,4,4,1,2,2,3,3,3,4,4,4,4, \ldots
First term =1=1
Second term =2=2
Fourth term =3=3
Seventh term =4=4
Eleventh term =5=5 \ldots, so on
\therefore Let S=1+2+4+7+11nS=1+2+4+7+11 \ldots n terms
S=1+2+4+7+11+n terms 0=(1+1+2+3+4n terms )an\frac{-S=1+2+4+7+11 \ldots+n \text { terms }}{0=(1+1+2+3+4 \ldots n \text { terms })-a_{n}}
\Rightarrow \,a_{n}=1+\\{1+2+3+4 \ldots(n-1) terms
an=1+n(n1)2=n2n+22(i)\Rightarrow a_{n}=1+\frac{n(n-1)}{2}=\frac{n^{2}-n+2}{2}\,\,\,\,\,\,\dots(i)
If n=14n=14, then an=92a_{n}=92
i.e., 92 nd term is 14 .
If n=15n=15, then an=106a_{n}=106
i.e., 106 th term is 15 .
Hence, 100 th term is 14