Solveeit Logo

Question

Question: The \(0.1\,mole\) of \(C{H_3}N{H_2}\,\left( {{K_b}\, = \,5 \times {{10}^{ - 4}}} \right)\) is mixed ...

The 0.1mole0.1\,mole of CH3NH2(Kb=5×104)C{H_3}N{H_2}\,\left( {{K_b}\, = \,5 \times {{10}^{ - 4}}} \right) is mixed with 0.08moles0.08\,molesof HClHCl and diluted to 1L1\,L. The [H+]\left[ {{H^ + }} \right] in solution is :
(i) 8×102M8 \times {10^{ - 2}}\,M
(ii) 8×1011M8 \times {10^{ - 11}}\,M
(iii) 1.6×1011M1.6 \times {10^{ - 11}}\,M
(iv) 8×105M8 \times {10^{ - 5}}\,M

Explanation

Solution

CH3NH2C{H_3}N{H_2} when reacts with HClHClforms CH3NH3+ClC{H_3}N{H_3}^ + C{l^ - }. Since the solution contains methylamine and its hydrochloride salt it is actually a basic buffer. A basic buffer is the one which maintains thepHpHof the solution on slight dilution or upon addition of a slight amount of acid or base. Manipulating Henderson’s equation you can calculate [OH]\left[ {O{H^ - }} \right], and hence find [H+]\left[ {{H^ + }} \right] .

Complete step-by-step answer: CH3NH2C{H_3}N{H_2} reacts with HClHCl as CH3NH2+HClCH3NH3+ClC{H_3}N{H_2} + HCl \to C{H_3}N{H_3}^ + C{l^ - }. Since 0.1mole0.1\,mole of CH3NH2C{H_3}N{H_2} is mixed with 0.08moles0.08\,molesof HClHCl, where HClHCl is the limiting reagent and hence after reaction CH3NH2C{H_3}N{H_2} will be present in excess. Hence the reaction mixture will contain methylamine and its hydrochloric salt resulting in a basic buffer as CH3NH2C{H_3}N{H_2} is a weak base and CH3NH3+ClC{H_3}N{H_3}^ + C{l^ - } is its salt with a strong acid.
The pOHpOH of a basic buffer solution can be estimated using Henderson Hasselbach equation which is given as:
pOH=pKb+log10(concentrationofsaltconcentrationofabase)pOH\, = \,p{K_b}\, + \,{\log _{10}}\left( {\dfrac{{concentration\,of\,salt}}{{concentration\,of\,a\,base}}} \right).
log10([OH])=log10(Kb)log10ConcentrationofbaseConcentrationofsalt\Rightarrow \, - {\log _{10}}\left( {\left[ {O{H^ - }} \right]} \right)\, = \, - {\log _{10}}\left( {{K_b}} \right) - {\log _{10}}\,\dfrac{{Concentration\,of\,base}}{{Concentration\,of\,salt}}
log10([OH])=log10(Kb)+log10ConcentrationofbaseConcentrationofsalt\Rightarrow \,{\log _{10}}\left( {\left[ {O{H^ - }} \right]} \right)\, = \,{\log _{10}}\left( {{K_b}} \right) + {\log _{10}}\,\dfrac{{Concentration\,of\,base}}{{Concentration\,of\,salt}}
log10([OH])=log10(Kb×ConcentrationofbaseConcentrationofsalt)\Rightarrow \,{\log _{10}}\left( {\left[ {O{H^ - }} \right]} \right)\, = \,{\log _{10}}\left( {{K_b}\, \times \,\dfrac{{Concentration\,of\,base}}{{Concentration\,of\,salt}}} \right)
Taking antilog we get,
[OH]=Kb×ConcentrationofbaseConcentrationofsalt..........(1)\left[ {O{H^ - }} \right]\, = \,{K_b}\, \times \,\dfrac{{Concentration\,of\,base}}{{Concentration\,of\,salt}}..........\left( 1 \right).
Therefore, concentration of base =[CH3NH2] = \,\left[ {C{H_3}N{H_2}} \right] and concentration of salt =[CH3NH3+Cl] = \,\left[ {C{H_3}N{H_3}^ + C{l^ - }} \right].
Now, 0.1mole0.1\,mole of CH3NH2C{H_3}N{H_2} is mixed with 0.08moles0.08\,molesof HClHCl, where HClHCl is the limiting reagent. Hence 0.08moles0.08\,molesof HClHClreacts with 0.08moles0.08\,moles of CH3NH2C{H_3}N{H_2} to form 0.08moles0.08\,moles of CH3NH3+ClC{H_3}N{H_3}^ + C{l^ - }. Hence after reaction (1.000.08)moles=0.02moles\left( {1.00 - 0.08} \right)\,moles\, = \,0.02\,molesof CH3NH2C{H_3}N{H_2} will be left in the reaction mixture.
Therefore, [CH3NH2]=0.02moles1L=0.02M\left[ {C{H_3}N{H_2}} \right]\, = \,\dfrac{{0.02\,moles}}{{1\,L}}\, = \,0.02\,M.
Also, [CH3NH3+Cl]=0.08moles1L=0.08M\left[ {C{H_3}N{H_3}^ + C{l^ - }} \right]\, = \,\dfrac{{0.08\,moles}}{{1\,L}}\, = \,0.08\,M.
Kb=5×104{K_b}\, = \,5 \times {10^{ - 4}}.
Putting all the values in equation (1)\left( 1 \right) we get,
[OH]=5×104×0.020.08=5×104×0.25=1.25×104M\left[ {O{H^ - }} \right]\, = \,5\, \times {10^{ - 4}} \times \,\dfrac{{0.02}}{{0.08}}\,\, = \,5 \times {10^{ - 4}} \times 0.25\, = \,1.25 \times {10^{ - 4}}\,M.
Now, [H+][OH]=Kw=1014\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]\, = \,{K_w}\, = \,{10^{ - 14}}.
[H+]=1014[OH]=10141.25×104M=0.8×1010M=8×1011M\, \Rightarrow \,\left[ {{H^ + }} \right]\, = \,\dfrac{{{{10}^{ - 14}}}}{{\left[ {O{H^ - }} \right]}}\, = \,\dfrac{{{{10}^{ - 14}}}}{{1.25 \times {{10}^{ - 4}}}}\,M\, = \,0.8 \times {10^{ - 10}}\,M\, = \,8 \times {10^{ - 11}}\,M

Hence the correct answer is (ii) 8×1011M8 \times {10^{ - 11}}\,M.

Note: For this question you must have a basic idea about buffers and its types. You can also calculate the pOHpOH of the solution using Henderson Hasselbach equation, then find pHpHof the solution using pH+pOH=14pH + pOH\, = \,14. Ultimately you can calculate [H+]\left[ {{H^ + }} \right] using pH=log10([H+])pH\, = \, - {\log _{10}}\left( {\left[ {{H^ + }} \right]} \right).