Question
Question: $\text{(III)}$ $x=\sqrt{7-3i}$...
(III)
x=7−3i
Answer
x=±27+58−i258−7
Explanation
Solution
We write
x=7−3i=a+bi,a,b∈R.Then,
(a+bi)2=a2−b2+2abi=7−3i.By equating the real and imaginary parts we get:
a2−b2=7,2ab=−3.A standard method is to use the formulas:
a=2∣z∣+ℜz,b=−2∣z∣−ℜz,(since the imaginary part of 7−3i is negative). Here,
∣7−3i∣=72+(−3)2=49+9=58.Thus,
a=258+7,b=−258−7.Therefore, the two square roots are
x=±27+58−i258−7.Explanation (minimal):
-
Let 7−3i=a+bi.
-
Equate (a+bi)2=7−3i to get a2−b2=7 and 2ab=−3.
-
Use formulas a=2∣z∣+7 and b=−2∣z∣−7 with ∣z∣=58.
-
Write final answer as ±(27+58−i258−7).