Solveeit Logo

Question

Question: $\text{(III)}$ $x=\sqrt{7-3i}$...

(III)\text{(III)}

x=73ix=\sqrt{7-3i}

Answer
x=±(7+582i5872)x=\pm\left(\sqrt{\frac{7+\sqrt{58}}{2}}- i\sqrt{\frac{\sqrt{58}-7}{2}}\right)
Explanation

Solution

We write

x=73i=a+bi,a,bR.x=\sqrt{7-3i}=a+bi,\quad a,b\in\mathbb{R}.

Then,

(a+bi)2=a2b2+2abi=73i.(a+bi)^2= a^2-b^2+2abi=7-3i.

By equating the real and imaginary parts we get:

a2b2=7,2ab=3.a^2-b^2=7,\quad 2ab=-3.

A standard method is to use the formulas:

a=z+z2,b=zz2,a = \sqrt{\frac{|z|+ \Re z}{2}},\quad b =-\sqrt{\frac{|z|-\Re z}{2}},

(since the imaginary part of 73i7-3i is negative). Here,

73i=72+(3)2=49+9=58.|7-3i|=\sqrt{7^2+(-3)^2}=\sqrt{49+9}=\sqrt{58}.

Thus,

a=58+72,b=5872.a = \sqrt{\frac{\sqrt{58}+7}{2}},\quad b = -\sqrt{\frac{\sqrt{58}-7}{2}}.

Therefore, the two square roots are

x=±(7+582i5872).x=\pm\left(\sqrt{\frac{7+\sqrt{58}}{2}}- i\sqrt{\frac{\sqrt{58}-7}{2}}\right).

Explanation (minimal):

  1. Let 73i=a+bi\sqrt{7-3i} = a+bi.

  2. Equate (a+bi)2=73i(a+bi)^2=7-3i to get a2b2=7a^2-b^2=7 and 2ab=32ab=-3.

  3. Use formulas a=z+72a=\sqrt{\frac{|z|+7}{2}} and b=z72b=-\sqrt{\frac{|z|-7}{2}} with z=58|z|=\sqrt{58}.

  4. Write final answer as ±(7+582i5872)\pm \left(\sqrt{\frac{7+\sqrt{58}}{2}}- i\sqrt{\frac{\sqrt{58}-7}{2}}\right).