Question
Question: $\text{Ex:}$ $f(x)=\frac{\sin6x+\sin12x}{\cos6x+\cos12x}$...
Ex: f(x)=cos6x+cos12xsin6x+sin12x

Answer
tan(9x)
Explanation
Solution
Using the sum-to-product trigonometric identities: sinA+sinB=2sin(2A+B)cos(2A−B) cosA+cosB=2cos(2A+B)cos(2A−B)
For the given expression f(x)=cos6x+cos12xsin6x+sin12x: Let A=12x and B=6x. Then 2A+B=212x+6x=9x and 2A−B=212x−6x=3x.
Applying the identities: Numerator: sin12x+sin6x=2sin(9x)cos(3x) Denominator: cos12x+cos6x=2cos(9x)cos(3x)
Substituting these back into f(x): f(x)=2cos(9x)cos(3x)2sin(9x)cos(3x) Assuming the denominator is non-zero (i.e., cos(3x)=0 and cos(9x)=0), we can cancel common terms: f(x)=cos(9x)sin(9x)=tan(9x) The condition cos(3x)=0 ensures that the original expression is defined.