Solveeit Logo

Question

Question: $\text{Ex:}$ $f(x)=\frac{\sin6x+\sin12x}{\cos6x+\cos12x}$...

Ex:\text{Ex:} f(x)=sin6x+sin12xcos6x+cos12xf(x)=\frac{\sin6x+\sin12x}{\cos6x+\cos12x}

Answer

tan(9x)\tan(9x)

Explanation

Solution

Using the sum-to-product trigonometric identities: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)

For the given expression f(x)=sin6x+sin12xcos6x+cos12xf(x)=\frac{\sin6x+\sin12x}{\cos6x+\cos12x}: Let A=12xA = 12x and B=6xB = 6x. Then A+B2=12x+6x2=9x\frac{A+B}{2} = \frac{12x+6x}{2} = 9x and AB2=12x6x2=3x\frac{A-B}{2} = \frac{12x-6x}{2} = 3x.

Applying the identities: Numerator: sin12x+sin6x=2sin(9x)cos(3x)\sin 12x + \sin 6x = 2 \sin(9x) \cos(3x) Denominator: cos12x+cos6x=2cos(9x)cos(3x)\cos 12x + \cos 6x = 2 \cos(9x) \cos(3x)

Substituting these back into f(x)f(x): f(x)=2sin(9x)cos(3x)2cos(9x)cos(3x)f(x) = \frac{2 \sin(9x) \cos(3x)}{2 \cos(9x) \cos(3x)} Assuming the denominator is non-zero (i.e., cos(3x)0\cos(3x) \neq 0 and cos(9x)0\cos(9x) \neq 0), we can cancel common terms: f(x)=sin(9x)cos(9x)=tan(9x)f(x) = \frac{\sin(9x)}{\cos(9x)} = \tan(9x) The condition cos(3x)0\cos(3x) \neq 0 ensures that the original expression is defined.