Solveeit Logo

Question

Question: \({\text{What is the value of (}}{\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ })?\)...

What is the value of (cos267 - sin223)?{\text{What is the value of (}}{\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ })?

Explanation

Solution

Given equation is (cos267 - sin223) Now, we can write this equation in this form i.e =cos2(90 - 23) - sin223 We know that cos2(90 - θ) = sin2θ Now using this concept we can write the above equation in this form i.e  = sin223 - sin223 = 0 Note: - These type of problems can be solved by converting either cosθ into sinθ or sinθ into cosθ here we have converted cosθ into sinθ in the similar way we can do it for other questions as well.    Given{\text{ equation is (}}{\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ }) \\\ Now,{\text{ we can write this equation in this form i}}{\text{.e}} \\\ = {\cos ^2}({90^ \circ }{\text{ - 2}}{{\text{3}}^ \circ }{\text{) - }}{\sin ^2}{23^ \circ } \\\ {\text{We know that}} \\\ {\cos ^2}({90^ \circ }{\text{ - }}\theta ){\text{ = }}{\sin ^2}\theta \\\ {\text{Now using this concept we can write the above equation in this form}} \\\ {\text{i}}{\text{.e}} \\\ {\text{ = }}{\sin ^2}{23^ \circ }{\text{ - }}{\sin ^2}{23^ \circ } \\\ = {\text{ 0}} \\\ {\text{Note: - These type of problems can be solved by converting either }}\cos \theta {\text{ into }}\sin \theta {\text{ or }}\sin \theta {\text{ into }}\cos \theta \\\ {\text{here we have converted }}\cos \theta {\text{ into }}\sin \theta {\text{ in the similar way we can do it for other questions as well}}{\text{.}} \\\ {\text{ }} \\\