Question
Question: \[ {\text{Using elementary transformation, find the inverse of the matrix}} \\\ A = \left( {\begin...
{\text{Using elementary transformation, find the inverse of the matrix}} \\\
A = \left( {\begin{array}{*{20}{c}}
a&b \\\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right) \\\
{\text{(a) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\\
{ - c}&a
\end{array}} \right) \\\
{\text{(b) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\\
c&a
\end{array}} \right) \\\
{\text{(c) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\\
c&a
\end{array}} \right) \\\
{\text{(d) None of these}} \\\
Explanation
Solution
{\text{We know that}} \\\
A = IA \\\
{\text{where }}I{\text{ is the inverse matrix such that}} \\\
I = \left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right) \\\
\left( {\begin{array}{*{20}{c}}
a&b \\\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right)A \\\
{{\text{R}}_1} \to \dfrac{{{{\text{R}}_1}}}{a} \\\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\\
0&1
\end{array}} \right)A \\\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\\
0&{\dfrac{{1 + bc}}{a} - \dfrac{{cb}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\\
0&{\dfrac{1}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\\
{\text{We have to make }}\dfrac{1}{a} = 1 \\\
{{\text{R}}_2} \to a{{\text{R}}_2} \\\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\\
{ - c}&a
\end{array}} \right)A \\\
{\text{We have to make }}\dfrac{b}{a} = 0 \\\
{{\text{R}}_1} \to {{\text{R}}_1} - \dfrac{b}{a}{{\text{R}}_2} \\\
\left( {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a} - \dfrac{b}{a}( - c)}&{\dfrac{{0 - b}}{a}*a} \\\
{ - c}&a
\end{array}} \right)A \\\
{\text{As we know the identity,}} \\\
I = A{A^{ - 1}} \\\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\\
{ - c}&a
\end{array}} \right) \\\
{\text{So,this is the required answer}}{\text{.}} \\\
Note:To solve such kind of matrices we should know the identities first. With the use of identities we can solve these questions easily.