Solveeit Logo

Question

Chemistry Question on Enthalpy change

Two reactions are given below:\text{Two reactions are given below:} 2Fe(s)+32O2(g)Fe2O3(s),ΔH=822kJ/mol2\text{Fe}_{(s)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{Fe}_2\text{O}_{3(s)}, \Delta H^\circ = -822 \, \text{kJ/mol} C(s)+12O2(g)CO(g),ΔH=110kJ/mol\text{C}_{(s)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{CO}_{(g)}, \Delta H^\circ = -110 \, \text{kJ/mol} Then enthalpy change for the following reaction\text{Then enthalpy change for the following reaction} 3C(s)+Fe2O3(s)2Fe(s)+3CO(g)3\text{C}_{(s)} + \text{Fe}_2\text{O}_{3(s)} \rightarrow 2\text{Fe}_{(s)} + 3\text{CO}_{(g)}

Answer

To find the enthalpy change (ΔH\Delta H) for the reaction, we can use Hess’s law and manipulate the given reactions.

Given Reactions:

The first reaction is exothermic with a release of 822 kJ. The second reaction is also exothermic with a release of 110 kJ.

Manipulating Reactions:

To find the enthalpy change for:

3C(g)+Fe2O3(s)2Fe(g)+3CO(g),3C(g) + Fe_2O_3(s) \rightarrow 2Fe(g) + 3CO(g),

we will reverse the first reaction and adjust the second.

Reversed first reaction:

Fe2O3(s)2Fe(g)+32O2(g),ΔH=+822kJFe_2O_3(s) \rightarrow 2Fe(g) + \frac{3}{2}O_2(g), \quad \Delta H = +822 \, \text{kJ}

Second reaction remains as it is:

3C(g)+32O2(g)3CO(g),ΔH=330kJ3C(g) + \frac{3}{2}O_2(g) \rightarrow 3CO(g), \quad \Delta H = -330 \, \text{kJ}

Adding the Reactions:

Now we sum the enthalpy changes:

ΔH=ΔHreversed+ΔHsecond=822+(330)=492kJ\Delta H = \Delta H_{\text{reversed}} + \Delta H_{\text{second}} = 822 + (-330) = 492 \, \text{kJ}

Thus, the enthalpy change for the reaction is: 492 kJ