Question
Mathematics Question on Vector Algebra
The unit vector perpendicular to each of the vectors a+b and a−b, where a=i^+j^+k^ and b=i^+2j^+3k^, is:
61i^+62j^+61k^
−61i^+61j^−61k^
−61i^+62j^+62k^
−61i^+62j^−61k^
−61i^+62j^−61k^
Solution
Let the given vectors be:
a=i^+j^+k^,b=i^+2j^+3k^. We need to find the unit vector perpendicular to both a+b and a−b. The cross product of these two vectors will give a vector perpendicular to both. Let’s first compute the cross product of a+b and a−b.
First, compute the two vectors:
a+b=(i^+j^+k^)+(i^+2j^+3k^)=2i^+3j^+4k^,
a−b=(i^+j^+k^)−(i^+2j^+3k^)=0i^−j^−2k^.
Now compute the cross product:
(a+b)×(a−b)=i^ 2 0j^3−1k^4−2.
Expand the determinant:
(a+b)×(a−b)=i^3 −14−2−j^2 04−2+k^2 03−1.
Calculate the 2x2 determinants:
3 −14−2=(3)(−2)−(4)(−1)=−6+4=−2,
2 04−2=(2)(−2)−(4)(0)=−4,
2 03−1=(2)(−1)−(3)(0)=−2.
So the cross product is:
(a+b)×(a−b)=−2i^+4j^−2k^.
Now, to find the unit vector, we need to divide this vector by its magnitude.
The magnitude of the vector is:
∣∣v∣∣=(−2)2+42+(−2)2=4+16+4=24=26.
Thus, the unit vector is:
v^=26−2i^+4j^−2k^=6−1i^+62j^−61k^.
This matches Option (4), so the correct answer is:
(4).