Solveeit Logo

Question

Mathematics Question on Types of Matrices

The matrix \text{The matrix } [100 010 001 ] is a:\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix} \text{ is a:}
(A) Scalar matrix
(B) Diagonal matrix
(C) Skew-symmetric matrix
(D) Symmetric matrix

A

(A), (B), and (D) only

B

(A), (B), and (C) only

C

(A), (B), (C), and (D)

D

(B), (C), and (D) only

Answer

(A), (B), and (D) only

Explanation

Solution

[100 010 001 ]\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}
- The matrix above is a scalar matrix because all diagonal elements are equal and non-zero.
- It is also a diagonal matrix since all non-diagonal elements are zero.
- This matrix is symmetric because A=ATA = A^T, where ATA^T is the transpose of AA.
- However, it is not a skew-symmetric matrix because a skew-symmetric matrix requires all diagonal elements to be zero.