Question
Question: \( {\text{The function }}f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{...
{\text{The function }}f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{a}{\text{ ,}}if{\text{ }}0 \leqslant x < 1 \\\ a{\text{ ,}}if{\text{ }}1 \leqslant x < \sqrt 2 \\\ \dfrac{{2{b^2} - 4b}}{{{{\text{x}}^2}}}{\text{ ,}}if{\text{ }}\sqrt 2 \leqslant x < \infty \\\ \end{gathered} \right\\}{\text{ is continuous on}}\left[ {0,\infty } \right). \\\ {\text{Find the most suitable values of }}a{\text{ and }}b. \\\
Solution
Hint: Let’s find out limits at all the critical points and then we’ll compare to find out the desired values.
Complete step by step answer:
{\text{We have been given f}}(x){\text{ }} \\\ f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{a}{\text{ ,}}if{\text{ }}0 \leqslant x < 1 \\\ a{\text{ ,}}if{\text{ }}1 \leqslant x < \sqrt 2 \\\ \dfrac{{2{b^2} - 4b}}{{{{\text{x}}^2}}}{\text{ ,}}if{\text{ }}\sqrt 2 \leqslant x < \infty \\\ \end{gathered} \right\\} \\\So,
At x = 1, we can say that x−→1limf(x)=f(1)=x+→1limf(x)
Taking left hand limit,
x−→1limf(x)=x−→1limax2
⇒x−→1limf(x)=a1
Taking right hand limit,
x+→1limf(x)=x+→1lima
⇒x+→1limf(x)=a
And f(1)=a
Comparing them you get,
⇒a=a1
⇒a2=1
⇒a=±1
Now at x = \sqrt 2 we can say that x−→2limf(x)=f(2)=x+→2limf(x)
Taking left hand limit,
x−→2limf(x)=x−→2lima
⇒x−→2limf(x)=a
Taking right hand limit,
x+→2limf(x)=x+→2limx22b2−4b
Now at
f(2)=b2−2b
Comparing them you get,
For a = 1
b2−2b=1
⇒b2−2b−1=0
Using x=2a−b±b2−4ac
⇒b=22±8=1±2
For a = - 1
b2−2b=−1
⇒b2−2b+1=0
⇒ b = 1,1
So, we have a=±1,b=1±2,1
NOTE: Be careful while calculating the value of b. Since we are using a quadratic formula, there will be 3 values for different values of a.