Solveeit Logo

Question

Question: \( {\text{The function }}f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{...

{\text{The function }}f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{a}{\text{ ,}}if{\text{ }}0 \leqslant x < 1 \\\ a{\text{ ,}}if{\text{ }}1 \leqslant x < \sqrt 2 \\\ \dfrac{{2{b^2} - 4b}}{{{{\text{x}}^2}}}{\text{ ,}}if{\text{ }}\sqrt 2 \leqslant x < \infty \\\ \end{gathered} \right\\}{\text{ is continuous on}}\left[ {0,\infty } \right). \\\ {\text{Find the most suitable values of }}a{\text{ and }}b. \\\

Explanation

Solution

Hint: Let’s find out limits at all the critical points and then we’ll compare to find out the desired values.

Complete step by step answer:

{\text{We have been given f}}(x){\text{ }} \\\ f\left( x \right) = \left\\{ \begin{gathered} \dfrac{{{{\text{x}}^2}}}{a}{\text{ ,}}if{\text{ }}0 \leqslant x < 1 \\\ a{\text{ ,}}if{\text{ }}1 \leqslant x < \sqrt 2 \\\ \dfrac{{2{b^2} - 4b}}{{{{\text{x}}^2}}}{\text{ ,}}if{\text{ }}\sqrt 2 \leqslant x < \infty \\\ \end{gathered} \right\\} \\\

So,

At x = 1, we can say that limx1f(x)=f(1)=limx+1f(x)\mathop {\lim }\limits_{{x^ - } \to 1} f\left( x \right) = f\left( 1 \right) = \mathop {\lim }\limits_{{x^ + } \to 1} f\left( x \right)

Taking left hand limit,

limx1f(x)=limx1x2a\mathop {\lim }\limits_{{x^ - } \to 1} f\left( x \right) = \mathop {\lim }\limits_{{x^ - } \to 1} \dfrac{{{{\text{x}}^2}}}{a}

limx1f(x)=1a\Rightarrow \mathop {\lim }\limits_{{x^ - } \to 1} f\left( x \right) = \dfrac{1}{a}

Taking right hand limit,

limx+1f(x)=limx+1a\mathop {\lim }\limits_{{x^ + } \to 1} f\left( x \right) = \mathop {\lim }\limits_{{x^ + } \to 1} a

limx+1f(x)=a\Rightarrow \mathop {\lim }\limits_{{x^ + } \to 1} f\left( x \right) = a

And f(1)=af\left( 1 \right) = a

Comparing them you get,

a=1a\Rightarrow a = \dfrac{1}{a}

a2=1\Rightarrow {a^2} = 1

a=±1\Rightarrow a = \pm 1

Now at x = \sqrt 2 we can say that limx2f(x)=f(2)=limx+2f(x)\mathop {\lim }\limits_{{x^ - } \to \sqrt 2 } f\left( x \right) = f\left( {\sqrt 2 } \right) = \mathop {\lim }\limits_{{x^ + } \to \sqrt 2 } f\left( x \right)

Taking left hand limit,

limx2f(x)=limx2a\mathop {\lim }\limits_{{x^ - } \to \sqrt 2 } f\left( x \right) = \mathop {\lim }\limits_{{x^ - } \to \sqrt 2 } a

limx2f(x)=a\Rightarrow \mathop {\lim }\limits_{{x^ - } \to \sqrt 2 } f\left( x \right) = a

Taking right hand limit,

limx+2f(x)=limx+22b24bx2\mathop {\lim }\limits_{{x^ + } \to \sqrt 2 } f\left( x \right) = \mathop {\lim }\limits_{{x^ + } \to \sqrt 2 } \dfrac{{2{b^2} - 4b}}{{{{\text{x}}^2}}}

Now at

f(2)=b22bf\left( {\sqrt 2 } \right) = {b^2} - 2b

Comparing them you get,

For a = 1

b22b=1{b^2} - 2b = 1

b22b1=0\Rightarrow {b^2} - 2b - 1 = 0

Using x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

b=2±82=1±2\Rightarrow b = \dfrac{{2 \pm \sqrt 8 }}{2} = 1 \pm \sqrt 2

For a = - 1

b22b=1{b^2} - 2b = - 1

b22b+1=0\Rightarrow {b^2} - 2b + 1 = 0

\Rightarrow b = 1,1

So, we have a=±1,b=1±2,1a = \pm 1,b = 1 \pm \sqrt 2 ,1

NOTE: Be careful while calculating the value of b. Since we are using a quadratic formula, there will be 3 values for different values of a.