Solveeit Logo

Question

Mathematics Question on Vector Algebra

The distance between the lines r=i^2j^+3k^+λ(2i^+3j^+6k^) and r=3i^2j^+k^+μ(4i^+6j^+12k^) is:\text{The distance between the lines } \vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + \lambda (2\hat{i} + 3\hat{j} + 6\hat{k}) \text{ and } \vec{r} = 3\hat{i} - 2\hat{j} + \hat{k} + \mu (4\hat{i} + 6\hat{j} + 12\hat{k}) \text{ is:}

A

287\frac{\sqrt{28}}{7}

B

1997\frac{\sqrt{199}}{7}

C

3287\frac{\sqrt{328}}{7}

D

4217\frac{\sqrt{421}}{7}

Answer

3287\frac{\sqrt{328}}{7}

Explanation

Solution

Use the formula for the distance between two skew lines:

d=(d1×d2)(r2r1)d1×d2.d = \frac{|(\vec{d}_1 \times \vec{d}_2) \cdot (\vec{r}_2 - \vec{r}_1)|}{|\vec{d}_1 \times \vec{d}_2|}.

Substitute the direction vectors and points from the lines and calculate the cross product and dot product as required.

Simplify to confirm that the distance is 3287\frac{\sqrt{328}}{7}, verifying option (3) as the correct answer.