Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

tan x=43,x in quadrant II.\text{tan x}=-\frac{4}{3},\text{x\, in\, quadrant \,II.}

Answer

Here, x is in quadrant II. π2<x<π\frac{\pi}{2}<x<{\pi}

i.e., π4<x2<π2⇒\frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}

Therefore, sinx2,cosx2andtanx2areallpositive.sin\frac{x}{2},cos\frac{x}{2}\,and\,\,tan\frac{x}{2}\,are\,\,all\,positive.

it is given that tan x=-43.\frac{4}{3}.

sec2x=1+tan2x=1+(43)2=1+169=259sec^2x=1+tan^2x=1+(\frac{-4}{3})^2=1+\frac{16}{9}=\frac{25}{9}

cos2x=925cos^2x=\frac{9}{25}

cosx=±35⇒cos\,x=±\frac{3}{5}

As x is in quadrant II, cos$$x is negative.

cosx=35∴cos\,x=\frac{-3}{5}

Now, cosx=2cos2x2=1cos x=2cos^2\,\frac{x}{2}=-1

35=2cos2x21⇒\frac{-3}{5}=2cos^2\frac{x}{2}-1

2cos2x2132⇒2cos^2\frac{x}{2}-1-\frac{3}{2}

2cos2x2=25⇒2cos^2\,\frac{x}{2}=\frac{2}{5}

2cos2x2=15⇒2cos^2\frac{x}{2}=\frac{1}{5}

cosx2=15.[cosx2ispossitive]⇒cos\frac{x}{2}=\frac{1}{5}\,\,\,\\.[∴cos\,\frac{x}{2}\,is\,\,possitive]

=cosx2=55=cos\frac{x}{2}=\frac{\sqrt5}{5}

sin2+cos2x2=1sin^2+cos^2\,\frac{x}{2}=1

sin2x2+(15)2=1sin^2\frac{x}{2}+(\frac{1}{\sqrt5})^2=1

sin2x2=115=45⇒sin^2\frac{x}{2}=1-\frac{1}{5}=\frac{4}{5}

sinx2=25[sinx2ispositive]⇒sin\frac{x}{2}=\frac{2}{\sqrt5}\,\,\,\,[∵\,sin\frac{x}{2}\,is\,positive]

sinx2=255∴ \,sin\frac{x}{2}=\frac{2\sqrt5}{5}

tanx2=sinx2cosx2=(25)(15)=2tan\frac{x}{2}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=\frac{(\frac{2}{\sqrt5})}{(\frac{1}{\sqrt5})}=2

Thus, the respective values of sinx2,cosx2and,tanx2are252,52,and2.sin\frac{x}{2},cos\frac{x}{2}\,and\,\,,tan\frac{x}{2}\,are\,\frac{2\sqrt5}{2},\frac{\sqrt5}{2},and\,2.