Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
tan x=−34,x in quadrant II.
Answer
Here, x is in quadrant II. 2π<x<π
i.e., ⇒4π<2x<2π
Therefore, sin2x,cos2xandtan2xareallpositive.
it is given that tan x=-34.
sec2x=1+tan2x=1+(3−4)2=1+916=925
cos2x=259
⇒cosx=±53
As x is in quadrant II, cos$$x is negative.
∴cosx=5−3
Now, cosx=2cos22x=−1
⇒5−3=2cos22x−1
⇒2cos22x−1−23
⇒2cos22x=52
⇒2cos22x=51
⇒cos2x=51.[∴cos2xispossitive]
=cos2x=55
sin2+cos22x=1
sin22x+(51)2=1
⇒sin22x=1−51=54
⇒sin2x=52[∵sin2xispositive]
∴sin2x=525
tan2x=cos2xsin2x=(51)(52)=2
Thus, the respective values of sin2x,cos2xand,tan2xare225,25,and2.