Solveeit Logo

Question

Question: \({\text{Prove that }}\tan {15^ \circ } + \tan {30^ \circ } + \tan {15^ \circ }\tan {30^ \circ } = 1...

Prove that tan15+tan30+tan15tan30=1{\text{Prove that }}\tan {15^ \circ } + \tan {30^ \circ } + \tan {15^ \circ }\tan {30^ \circ } = 1

Explanation

Solution

 We know that tan45=1 We can write tan45=tan(30+15) We also know that tan(A+B)=tanA+tanB1tanAtanB By using this we can write  tan(30+15)=tan30+tan151tan30tan15=tan45=1 By solving above equation tan30+tan15=1tan30tan15 By rearranging the equation we get the result tan30+tan15+tan30tan15=1 proved Note: - In such type of question always try to apply the formula of tan(A+B) or tan(AB)  and put the angles that are given in question so you can prove it.  \\\ {\text{We know that tan4}}{{\text{5}}^ \circ } = 1 \\\ {\text{We can write tan4}}{{\text{5}}^ \circ } = \tan ({30^ \circ } + {15^ \circ }) \\\ {\text{We also know that tan(}}A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} \\\ {\text{By using this we can write }} \\\ \Rightarrow \tan ({30^ \circ } + {15^ \circ }) = \dfrac{{\tan {{30}^ \circ } + \tan {{15}^ \circ }}}{{1 - \tan {{30}^ \circ }\tan {{15}^ \circ }}} = \tan {45^ \circ } = 1 \\\ {\text{By solving above equation}} \\\ \tan {30^ \circ } + \tan {15^ \circ } = 1 - \tan {30^ \circ }\tan {15^ \circ } \\\ {\text{By rearranging the equation we get the result}} \\\ \tan {30^ \circ } + \tan {15^ \circ } + \tan {30^ \circ }\tan {15^ \circ } = 1{\text{ }}proved \\\ {\text{Note: - In such type of question always try to apply the formula of tan(}}A + B){\text{ or tan(}}A - B) \\\ {\text{ and put the angles that are given in question so you can prove it}}{\text{.}} \\\