Solveeit Logo

Question

Question: \({\text{Pb}}\left( {\text{s}} \right) + {\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\te...

Pb(s)+Hg2SO4PbSO4(s)+2Hg(l){\text{Pb}}\left( {\text{s}} \right) + {\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \rightleftharpoons {\text{PbS}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{2Hg}}\left( {\text{l}} \right) design the cell if both electrolytes are present in their saturated solution state. Given EPb/Pb2+{\text{E}}_{{\text{Pb/P}}{{\text{b}}^{2 + }}}^ \circ and EHg/Hg22+{\text{E}}_{{\text{Hg/Hg}}_2^{2 + }}^ \circ are 0.126 V0.126{\text{ V}} and 0.789 V0.789{\text{ V}} respectively and KSP{{\text{K}}_{{\text{SP}}}} of PbSO4{\text{PbS}}{{\text{O}}_{\text{4}}} and Hg2SO4{\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} are 2.43×1082.43 \times {10^{ - 8}} and 1.46×1061.46 \times {10^{ - 6}} respectively. The e.m.f. of given cell reaction to the nearest integer.

Explanation

Solution

We are given a redox reaction in which Pb{\text{Pb}} is getting oxidised and Hg{\text{Hg}} is getting reduced. Calculate the e.m.f. of a given cell using Nernst's equation. Also, we are given the solubility product constant. From the solubility product constant, calculate the concentration of the respective ions.

Formulae Used:
Ecell=EreductionEoxidation{\text{E}}_{{\text{cell}}}^ \circ = {\text{E}}_{{\text{reduction}}}^ \circ - {\text{E}}_{{\text{oxidation}}}^ \circ
Ecell=Ecell0.059nlog[Reduction][Oxidation]{{\text{E}}_{{\text{cell}}}} = {\text{E}}_{{\text{cell}}}^ \circ - \dfrac{{{\text{0}}{\text{.059}}}}{{\text{n}}}\log \dfrac{{[{\text{Reduction}}]}}{{[{\text{Oxidation}}]}}

Complete answer:
We are given the reaction,
Pb(s)+Hg2SO4PbSO4(s)+2Hg(l){\text{Pb}}\left( {\text{s}} \right) + {\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \rightleftharpoons {\text{PbS}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{2Hg}}\left( {\text{l}} \right)
We know that the oxidation reaction occurs at the anode and the reduction reaction occurs at the cathode. Thus, the reactions occurring at anode and cathode are,
Anode: PbPb2++2e{\text{Anode: Pb}} \to {\text{P}}{{\text{b}}^{2 + }} + {\text{2}}{{\text{e}}^ - }
Cathode: Hg22++2e2Hg{\text{Cathode: Hg}}_2^{2 + } + {\text{2}}{{\text{e}}^ - } \to 2{\text{Hg}}

In the reaction, Pb{\text{Pb}} is getting oxidised and Hg{\text{Hg}} is getting reduced. Thus, EPb/Pb2+=0.126 V{\text{E}}_{{\text{Pb/P}}{{\text{b}}^{2 + }}}^ \circ = 0.126{\text{ V}} is the oxidation potential and EHg/Hg22+=0.789 V{\text{E}}_{{\text{Hg/Hg}}_2^{2 + }}^ \circ = 0.789{\text{ V}} is the reduction potential.

The dissociation of PbSO4{\text{PbS}}{{\text{O}}_{\text{4}}} occurs as follows:
PbSO4Pb2++SO42{\text{PbS}}{{\text{O}}_{\text{4}}} \rightleftharpoons {\text{P}}{{\text{b}}^{2 + }} + {\text{SO}}_4^{2 - }

We know that the solubility product constant is the product of concentration of the individual ions. Thus,
KSP=[Pb2+][SO42]\Rightarrow {{\text{K}}_{{\text{SP}}}} = [{\text{P}}{{\text{b}}^{2 + }}{\text{][SO}}_4^{2 - }]
KSP=[Pb2+]2\Rightarrow {{\text{K}}_{{\text{SP}}}} = {[{\text{P}}{{\text{b}}^{2 + }}{\text{]}}^2} …… [Pb2+]=[SO42][{\text{P}}{{\text{b}}^{2 + }}{\text{]}} = {\text{[SO}}_4^{2 - }]
We are given that the solubility product constant (KSP)\left( {{{\text{K}}_{{\text{SP}}}}} \right) for PbSO4\Rightarrow {\text{PbS}}{{\text{O}}_{\text{4}}} is 2.43×1082.43 \times {10^{ - 8}}. Thus,
[Pb2+]2=2.43×108\Rightarrow {[{\text{P}}{{\text{b}}^{2 + }}{\text{]}}^2} = 2.43 \times {10^{ - 8}}
[Pb2+]=2.43×108[{\text{P}}{{\text{b}}^{2 + }}{\text{]}} = \sqrt {2.43 \times {{10}^{ - 8}}}
The dissociation of Hg2SO4{\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} occurs as follows:
Hg2SO4Hg22++SO42{\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \rightleftharpoons {\text{Hg}}_2^{2 + } + {\text{SO}}_4^{2 - }
We know that the solubility product constant is the product of concentration of the individual ions. Thus,
KSP=[Hg22+][SO42]\Rightarrow {{\text{K}}_{{\text{SP}}}} = [{\text{Hg}}_2^{2 + }][{\text{SO}}_4^{2 - }]
KSP=[Hg22+]2\Rightarrow {{\text{K}}_{{\text{SP}}}} = {[{\text{Hg}}_2^{2 + }]^2} …… [Hg22+]=[SO42][{\text{Hg}}_2^{2 + }] = [{\text{SO}}_4^{2 - }]
We are given that the solubility product constant (KSP)\left( {{{\text{K}}_{{\text{SP}}}}} \right) for Hg2SO4{\text{H}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} is 1.46×1061.46 \times {10^{ - 6}}. Thus,
[Hg22+]2=1.46×106\Rightarrow {[{\text{Hg}}_2^{2 + }]^2} = 1.46 \times {10^{ - 6}}
[Hg22+]=1.46×106\Rightarrow [{\text{Hg}}_2^{2 + }] = \sqrt {1.46 \times {{10}^{ - 6}}}

We can calculate the standard potential of the cell using the equation as follows:
Ecell=EreductionEoxidation\Rightarrow {\text{E}}_{{\text{cell}}}^ \circ = {\text{E}}_{{\text{reduction}}}^ \circ - {\text{E}}_{{\text{oxidation}}}^ \circ
In the reaction, Pb{\text{Pb}} is getting oxidised and Hg{\text{Hg}} is getting reduced. Thus,
Ecell=EHg/Hg22+EPb/Pb2+\Rightarrow {\text{E}}_{{\text{cell}}}^ \circ = {\text{E}}_{{\text{Hg/Hg}}_2^{2 + }}^ \circ - {\text{E}}_{{\text{Pb/P}}{{\text{b}}^{2 + }}}^ \circ
Substitute 0.126 V0.126{\text{ V}} for EPb/Pb2+{\text{E}}_{{\text{Pb/P}}{{\text{b}}^{2 + }}}^ \circ and 0.789 V0.789{\text{ V}} for EHg/Hg22+{\text{E}}_{{\text{Hg/Hg}}_2^{2 + }}^ \circ . Thus,
Ecell=0.789 V0.126 V\Rightarrow {\text{E}}_{{\text{cell}}}^ \circ = 0.789{\text{ V}} - 0.126{\text{ V}}
Ecell=0.663 V\Rightarrow {\text{E}}_{{\text{cell}}}^ \circ = 0.663{\text{ V}}
Thus, the standard potential of the cell is 0.663 V0.663{\text{ V}}.
We know the Nernst equation is as follows:
Ecell=Ecell0.059nlog[Reduction][Oxidation]{{\text{E}}_{{\text{cell}}}} = {\text{E}}_{{\text{cell}}}^ \circ - \dfrac{{{\text{0}}{\text{.059}}}}{{\text{n}}}\log \dfrac{{[{\text{Reduction}}]}}{{[{\text{Oxidation}}]}}
Where Ecell{{\text{E}}_{{\text{cell}}}} is the potential of cell,
Ecell{\text{E}}_{{\text{cell}}}^ \circ is the standard potential of cell,
n{\text{n}} is the number of moles of an electron.
In the reaction, Pb{\text{Pb}} is getting oxidised and Hg{\text{Hg}} is getting reduced. Thus,
Ecell=Ecell0.059nlog[Hg22+][Pb2+]\Rightarrow {{\text{E}}_{{\text{cell}}}} = {\text{E}}_{{\text{cell}}}^ \circ - \dfrac{{{\text{0}}{\text{.059}}}}{{\text{n}}}\log \dfrac{{[{\text{Hg}}_2^{2 + }]}}{{[{\text{P}}{{\text{b}}^{2 + }}]}}
Substitute 0.663 V0.663{\text{ V}} for the standard potential of the cell, 2 for the number of moles of electron, 1.46×106\sqrt {1.46 \times {{10}^{ - 6}}} for the [Hg22+][{\text{Hg}}_2^{2 + }] and 2.43×108\sqrt {2.43 \times {{10}^{ - 8}}} for the [Pb2+][{\text{P}}{{\text{b}}^{2 + }}{\text{]}}. Thus,
Ecell=0.663 V0.0592log1.46×1062.43×108\Rightarrow {{\text{E}}_{{\text{cell}}}} = 0.663{\text{ V}} - \dfrac{{{\text{0}}{\text{.059}}}}{{\text{2}}}\log \dfrac{{\sqrt {1.46 \times {{10}^{ - 6}}} }}{{\sqrt {2.43 \times {{10}^{ - 8}}} }}
Ecell=0.663 V0.0592×0.8893\Rightarrow {{\text{E}}_{{\text{cell}}}} = 0.663{\text{ V}} - \dfrac{{{\text{0}}{\text{.059}}}}{{\text{2}}} \times 0.8893
Ecell=0.663 V0.02623\Rightarrow {{\text{E}}_{{\text{cell}}}} = 0.663{\text{ V}} - 0.02623
Ecell=0.6367 V\Rightarrow {{\text{E}}_{{\text{cell}}}} = 0.6367{\text{ V}}

Thus, the e.m.f. of the cell is 0.6367 V0.6367{\text{ V}}.

Note: The Nernst equation is applicable to single electrode reduction or oxidation potentials at any condition, standard electrode potentials, electromotive force of an electrochemical cell, unknown ionic concentrations, determining feasibility of electrochemical cells, etc. The equation is not applicable to the solutions having high concentrations and the equation cannot be used to measure the cell potential when current is flowing through the electrode.