Solveeit Logo

Question

Question: \({{\text{O}}_{\text{2}}}\)is bubbled through water at \(293\,{\text{K}}\)assuming that\({{\text{O...

O2{{\text{O}}_{\text{2}}}is bubbled through water at 293K293\,{\text{K}}assuming
thatO2{{\text{O}}_{\text{2}}}exerts a partial pressure of0.98bar0.98\,{\text{bar}}, the solubility of
O2{{\text{O}}_{\text{2}}}in gm.L1{\text{gm}}{\text{.}}\,{{\text{L}}^{ - 1}}is (Henry’s law constant=34kbar = \,34\,{\text{k}}\,{\text{bar}})
A. 0.0250.025
B. 0.050.05
C. 0.10.1
D. 0.20.2

Explanation

Solution

The solubility is determined as the amount of gas dissolved in the volume of the solvent. The amount of the gas can be determined by using Henry’s law and the volume of the solvent can be determined by the density formula.

Step by step answer: According to Henry law, at a constant temperature, the amount of gas dissolved in liquid or mole fraction is directly proportional to the partial pressure of that gas.
We can use the Formula:
P=KHxP = {{\text{K}}_{\text{H}}}\,x
Density = MassVolume{\text{Density}}\,{\text{ = }}\dfrac{{{\text{Mass}}}}{{{\text{Volume}}}}
PO2xO2{P_{{O_2}}} \propto {x_{{O_2}}}
Where,
PO2{P_{{O_2}}}is the partial pressure of the oxygen gas.
xO2{x_{{O_2}}}is the mole fraction of oxygen gas.
PO2=KHxO2{P_{{O_2}}} = {{\text{K}}_{\text{H}}}\,{x_{{O_2}}}

Where,
KH{{\text{K}}_{\text{H}}}is Henry’s law constant.
Convert Henry’s law constant from Kbar to bar.
1kbar = 1000bar1\,{\text{k}}\,{\text{bar}}\,{\text{ = }}\,{\text{1000}}\,{\text{bar}}

Substitute 0.98bar0.98\,{\text{bar}} for partial pressure of oxygen and 34000bar34000\,\,{\text{bar}}for Henry’s law constant.
0.98bar=34000bar×xO20.98\,{\text{bar}} = 34000\,{\text{bar}}\, \times {x_{{O_2}}}
xO2=0.98bar34000bar\Rightarrow {x_{{O_2}}}\, = \dfrac{{0.98\,{\text{bar}}}}{{34000\,{\text{bar}}}}
xO2=2.8×105\Rightarrow {x_{{O_2}}}\, = 2.8 \times {10^{ - 5}}
So, the mole of oxygen gas is 2.8×1052.8 \times {10^{ - 5}}.
Use the mole formula to determine the mass of oxygen gas as follows:
Mole = MassMolarmass{\text{Mole}}\,\,{\text{ = }}\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}
The molar mass of oxygen gas is 32g/mol32\,{\text{g/mol}}.
Substitute 2.8×1052.8 \times {10^{ - 5}} for mole and 32g/mol32\,{\text{g/mol}} for molar mass.
2.8×105mol = Mass32g/mol\Rightarrow 2.8 \times {10^{ - 5}}\,{\text{mol}}\,{\text{ = }}\dfrac{{{\text{Mass}}}}{{32\,{\text{g/mol}}}}
Mass = 2.8×105mol×32g/mol\Rightarrow {\text{Mass}}\,{\text{ = }}\,2.8 \times {10^{ - 5}}\,{\text{mol}}\, \times 32\,{\text{g/mol}}
Mass = 89.9×105g\Rightarrow {\text{Mass}}\,{\text{ = }}\,89.9 \times {10^{ - 5}}\,{\text{g}}
So, the mass of oxygen gas is 89.9×105g89.9 \times {10^{ - 5}}\,{\text{g}}.

-Determine the mole of water as follows:
The total mole fraction is equal to one so, the mole of water is,
1=2.8×105molO2+Mole of water1\, = \,2.8 \times {10^{ - 5}}\,{\text{mol}}\,{{\text{O}}_{\text{2}}}\, + \,{\text{Mole of water}}
Mole of water=12.8×105molO2\Rightarrow {\text{Mole of water}}\, = \,1 - 2.8 \times {10^{ - 5}}\,{\text{mol}}\,{{\text{O}}_{\text{2}}}\,
Mole of water=0.99mol\Rightarrow {\text{Mole of water}}\, = \,0.99\,\,{\text{mol}}\,

-Use the mole formula to determine the mass of water as follows:
Molar mass of water is 18g/mol18\,{\text{g/mol}}.
Substitute 0.990.99 for mole and 18g/mol18\,{\text{g/mol}} for molar mass.
0.99mol = Mass18g/mol0.99\,{\text{mol}}\,{\text{ = }}\dfrac{{{\text{Mass}}}}{{18\,{\text{g/mol}}}}
Mass = 0.99mol×18g/mol\Rightarrow {\text{Mass}}\,{\text{ = }}\,0.99\,{\text{mol}}\, \times 18\,{\text{g/mol}}
Mass = 17.9g\Rightarrow {\text{Mass}}\,{\text{ = }}\,17.9\,{\text{g}}
So, the mass of water is17.9g17.9\,{\text{g}}.

-Use the density formula to determine the volume of water as follows:
Density = MassVolume{\text{Density}}\,{\text{ = }}\dfrac{{{\text{Mass}}}}{{{\text{Volume}}}}
The density of water is 1000g/L1000\,{\text{g/L}}.
Substitute 17.9g17.9\,{\text{g}}for the mass of water and 1000g/L1000\,{\text{g/L}}for the density of water.
1000g/L = 17.9gVolume1000\,{\text{g/L}}\,{\text{ = }}\dfrac{{17.9\,{\text{g}}}}{{{\text{Volume}}}}
Volume = 17.9g1000g/L\Rightarrow {\text{Volume}}\,{\text{ = }}\dfrac{{17.9\,{\text{g}}}}{{1000\,{\text{g/L}}}}
Volume = 0.0179L\Rightarrow {\text{Volume}}\,\,{\text{ = }}\,\,{\text{0}}{\text{.0179}}\,\,{\text{L}}
So, the volume of water is 0.0179L{\text{0}}{\text{.0179}}\,\,{\text{L}}.
Use the solubility formula to determine the solubility as follows:
solubility = gramofgasLiterofsolvent{\text{solubility}}\,{\text{ = }}\dfrac{{{\text{gram}}\,{\text{of}}\,{\text{gas}}}}{{{\text{Liter}}\,{\text{of}}\,{\text{solvent}}}}
Substitute 89.9×105g89.9 \times {10^{ - 5}}\,{\text{g}}for the mass of oxygen gas and 0.0179L{\text{0}}{\text{.0179}}\,\,{\text{L}}for the volume of water.
solubility = 89.9×105g0.0179L\Rightarrow {\text{solubility}}\,{\text{ = }}\dfrac{{89.9 \times {{10}^{ - 5}}\,{\text{g}}}}{{{\text{0}}{\text{.0179}}\,{\text{L}}}}
solubility = 0.05g/L\Rightarrow {\text{solubility}}\,{\text{ = }}\,{\text{0}}{\text{.05}}\,{\text{g/L}}
So, the solubility of oxygen gas is 0.05g/L{\text{0}}{\text{.05}}\,{\text{g/L}}.

Therefore, option (B) 0.050.05is correct.

Note: Molar mass is the sum of the atomic mass. The mass of water is,
(1.0g/mol×2H)+(16g/mol×1O)=18g/mol\left( {1.0\,{\text{g/mol}} \times 2\,{\text{H}}} \right)\, + \left( {16\,{\text{g/mol}} \times 1{\text{O}}} \right)\, = \,18\,{\text{g/mol}}. The total mole fraction of all the substances of a mixture is equal to one or equal to 100%100\% .