Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

NO2 required for a reaction is produced by decomposition of N2O5 in CCl4 as by equation\text{NO}_2 \text{ required for a reaction is produced by decomposition of } \text{N}_2\text{O}_5 \text{ in } \text{CCl}_4 \text{ as by equation}
2N2O5(g)4NO2(g)+O2(g)2\text{N}_2\text{O}_{5(g)} \rightarrow 4\text{NO}_{2(g)} + \text{O}_{2(g)}
The initial concentration of N2O5 is 3 mol L1 and it is 2.75 mol L1 after 30 minutes.\text{The initial concentration of } \text{N}_2\text{O}_5 \text{ is } 3 \text{ mol L}^{-1} \text{ and it is } 2.75 \text{ mol L}^{-1} \text{ after 30 minutes.}
\text{The rate of formation of } \text{NO}_2 \text{ is } x \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1} , \text{ value of } x \text{ is \\_\\_\\_\\_\\_\\_.}

Answer

Solution: To find the rate of formation of NO2NO_2, we first need to determine the change in concentration of N2O4N_2O_4 over the given time period.

Initial and Final Concentration:

Initial concentration of N2O4N_2O_4: [N2O4]0=3mol L1[N_2O_4]_0 = 3 \, \text{mol L}^{-1}

Final concentration after 30 minutes: [N2O4]=2.75mol L1[N_2O_4] = 2.75 \, \text{mol L}^{-1}

Change in Concentration:

The change in concentration of N2O4N_2O_4 over 30 minutes is:

Δ[N2O4]=[N2O4]0[N2O4]=32.75=0.25mol L1\Delta [N_2O_4] = [N_2O_4]_0 - [N_2O_4] = 3 - 2.75 = 0.25 \, \text{mol L}^{-1}

Stoichiometry of the Reaction:

According to the reaction:

2N2O44NO22N_2O_4 \rightarrow 4NO_2

For every 2 moles of N2O4N_2O_4 that decompose, 4 moles of NO2NO_2 are formed, so the ratio is:

4molNO22molN2O4=2\frac{4 \, \text{mol} \, NO_2}{2 \, \text{mol} \, N_2O_4} = 2

Rate of Formation of NO2NO_2:

The change in concentration of NO2NO_2 formed is:

Δ[NO2]=2×Δ[N2O4]=2×0.25=0.50mol L1\Delta [NO_2] = 2 \times \Delta [N_2O_4] = 2 \times 0.25 = 0.50 \, \text{mol L}^{-1}

The rate of formation of NO2NO_2 over 30 minutes is:

Rate=Δ[NO2]Δt=0.50mol L130min=0.5030mol L1min1=160mol L1min1\text{Rate} = \frac{\Delta [NO_2]}{\Delta t} = \frac{0.50 \, \text{mol L}^{-1}}{30 \, \text{min}} = \frac{0.50}{30} \, \text{mol L}^{-1} \text{min}^{-1} = \frac{1}{60} \, \text{mol L}^{-1} \text{min}^{-1}

Convert to xx:

Given x×103=160x \times 10^{-3} = \frac{1}{60}, we can find xx:

x=160×1000=16.6717x = \frac{1}{60} \times 1000 = 16.67 \approx 17

Thus, the value of xx is: 17