Question
Mathematics Question on Conditional Probability
Let X denote the number of hours you play during a randomly selected day. The probability that X can take values x has the following form, where c is some constant:
P(X=x)=⎩⎨⎧0.1, cx, c(5−x), 0,if x=0if x=1 or x=2if x=3 or x=4otherwise
Match List-I with List-II:
(A)- (I), (B)- (II), (C)- (III), (D)- (IV)
(A)- (IV), (B)- (III), (C)- (II), (D)- (I)
(A)- (II), (B)- (IV), (C)- (I), (D)- (III)
(A)- (III), (B)- (IV), (C)- (I), (D)- (II)
(A)- (IV), (B)- (III), (C)- (II), (D)- (I)
Solution
The sum of all probabilities must equal 1:
P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=1.
Substitute the given probabilities:
0.1+c(1)+c(2)+c(2)+c(1)=1.
Simplify:
0.1+6c=1⇒6c=0.9⇒c=0.15.
(A) c=0.15. Match: (A) -> (IV).
(B) P(X≤2)=P(X=0)+P(X=1)+P(X=2):
P(X≤2)=0.1+c(1)+c(2)=0.1+0.15+0.3=0.55.
Match: (B) -> (III).
(C) P(X=2)=c(2)=0.3. Match: (C) -> (II).
(D) P(X≥2)=P(X=2)+P(X=3)+P(X=4):
P(X≥2)=c(2)+c(2)+c(1)=0.3+0.3+0.15=0.75.
Match: (D) -> (I).
(A) - (IV), (B) - (III), (C) - (II), (D) - (I).