Solveeit Logo

Question

Mathematics Question on Conditional Probability

Let X denote the number of hours you play during a randomly selected day. The probability that X can take values x has the following form, where c is some constant:\text{Let } X \text{ denote the number of hours you play during a randomly selected day. The probability that } X \text{ can take values } x \text{ has the following form, where } c \text{ is some constant:}
P(X=x)={0.1,if x=0 cx,if x=1 or x=2 c(5x),if x=3 or x=4 0,otherwiseP(X = x) = \begin{cases} 0.1, & \text{if } x = 0 \\\ cx, & \text{if } x = 1 \text{ or } x = 2 \\\ c(5 - x), & \text{if } x = 3 \text{ or } x = 4 \\\ 0, & \text{otherwise} \end{cases}
Match List-I with List-II:\text{Match List-I with List-II:}
Table

A

(A)- (I), (B)- (II), (C)- (III), (D)- (IV)

B

(A)- (IV), (B)- (III), (C)- (II), (D)- (I)

C

(A)- (II), (B)- (IV), (C)- (I), (D)- (III)

D

(A)- (III), (B)- (IV), (C)- (I), (D)- (II)

Answer

(A)- (IV), (B)- (III), (C)- (II), (D)- (I)

Explanation

Solution

The sum of all probabilities must equal 1:

P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)=1.P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1.

Substitute the given probabilities:

0.1+c(1)+c(2)+c(2)+c(1)=1.0.1 + c(1) + c(2) + c(2) + c(1) = 1.

Simplify:

0.1+6c=16c=0.9c=0.15.0.1 + 6c = 1 \Rightarrow 6c = 0.9 \Rightarrow c = 0.15.

(A) c=0.15c = 0.15. Match: (A) -> (IV).

(B) P(X2)=P(X=0)+P(X=1)+P(X=2)P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2):

P(X2)=0.1+c(1)+c(2)=0.1+0.15+0.3=0.55.P(X \leq 2) = 0.1 + c(1) + c(2) = 0.1 + 0.15 + 0.3 = 0.55.

Match: (B) -> (III).

(C) P(X=2)=c(2)=0.3.P(X = 2) = c(2) = 0.3. Match: (C) -> (II).

(D) P(X2)=P(X=2)+P(X=3)+P(X=4)P(X \geq 2) = P(X = 2) + P(X = 3) + P(X = 4):

P(X2)=c(2)+c(2)+c(1)=0.3+0.3+0.15=0.75.P(X \geq 2) = c(2) + c(2) + c(1) = 0.3 + 0.3 + 0.15 = 0.75.

Match: (D) -> (I).

(A) - (IV), (B) - (III), (C) - (II), (D) - (I).