Solveeit Logo

Question

Mathematics Question on Logarithms

Let S=xR:(3+2)x+(32)x=10\text{Let } S = \\{x \in \mathbb{R} : (\sqrt{3} + \sqrt{2})^x + (\sqrt{3} - \sqrt{2})^x = 10\\}.Then the number of elements in SS is:

A

4

B

0

C

2

D

1

Answer

2

Explanation

Solution

Consider:

(3+2)x+(32)x=10\left( \sqrt{3} + \sqrt{2} \right)^x + \left( \sqrt{3} - \sqrt{2} \right)^x = 10

Let:

(3+2)x=t\left( \sqrt{3} + \sqrt{2} \right)^x = t

Thus:

(32)x=1t\left( \sqrt{3} - \sqrt{2} \right)^x = \frac{1}{t}

Substitute and simplify:

t+1t=10t + \frac{1}{t} = 10

Multiplying through by tt gives:

t210t+1=0t^2 - 10t + 1 = 0

Solving this quadratic equation:

t=10±10042=10±962=10±462=5±26t = \frac{10 \pm \sqrt{100 - 4}}{2} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2} = 5 \pm 2\sqrt{6}

Since:

(3+2)x>0,t=5+26\left( \sqrt{3} + \sqrt{2} \right)^x > 0, \quad t = 5 + 2\sqrt{6}

Thus, the corresponding values of xx are:
x=2orx=2x = 2 \quad \text{or} \quad x = -2

Number of solutions = 2.