Solveeit Logo

Question

Question: $ {\text{If }}\theta = {30^ \circ },{\text{ verify that:}} \\\ \left( {\text{i}} \right){\text{t...

{\text{If }}\theta = {30^ \circ },{\text{ verify that:}} \\\ \left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\\ \left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\\ \left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\\ \left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta \\\

Explanation

Solution

In this collection of questions we have to solve Left Hand Side(LHS) and Right Hand Side(RHS) separately for each question. Here we just need to put the value of θ=30\theta = {30^ \circ } in both LHS and RHS. If we get the same value then the LHS = RHS.

Complete step-by-step answer:
(i)tan2θ = 2tanθ1tan2θ\left( {\text{i}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }}
On puttingθ=30\theta = {30^ \circ } in LHS, we get
tan2θ tan2(30) tan60  \Rightarrow {\text{tan2}}\theta \\\ \Rightarrow {\text{tan2(3}}{0^ \circ }) \\\ \Rightarrow \tan {60^ \circ } \\\
And we know, tan60=3\tan {60^ \circ } = \sqrt 3
Then,
tan60 3 ———- eq.1  \Rightarrow {\text{tan}}{60^ \circ } \\\ \Rightarrow \sqrt 3 {\text{ ---------- eq}}{\text{.1}} \\\

On puttingθ=30\theta = {30^ \circ } in RHS, we get
2tanθ1tan2θ 2tan301tan230  \Rightarrow \dfrac{{2{\text{tan}}\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\theta }} \\\ \Rightarrow \dfrac{{2{\text{tan3}}{0^ \circ }}}{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\\
And we know tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}
Then,
2(13)1(13)2  3 ——– eq.2  \Rightarrow \dfrac{{2(\dfrac{1}{{\sqrt 3 }})}}{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{\text{ }} \\\ \Rightarrow \sqrt 3 {\text{ -------- eq}}{\text{.2}} \\\
From eq.1 and eq.2 we observe that
LHS=RHS Hence Proved

(ii)tan2θ = 4tanθ1+tan2θ\left( {{\text{ii}}} \right){\text{tan2}}\theta {\text{ = }}\dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}
On puttingθ=30\theta = {30^ \circ } in LHS, we get
tan2θ tan2(30) tan60  \Rightarrow {\text{tan2}}\theta \\\ \Rightarrow {\text{tan2(3}}{0^ \circ }) \\\ \Rightarrow {\text{tan}}{60^ \circ } \\\
And we know, tan60=3\tan {60^ \circ } = \sqrt 3
Then,
tan60 3 ——— eq.3  \Rightarrow {\text{tan}}{60^ \circ } \\\ \Rightarrow \sqrt 3 {\text{ --------- eq}}{\text{.3}} \\\

On puttingθ=30\theta = {30^ \circ } in RHS, we get
4tanθ1+tan2θ 4tan301+tan230  \Rightarrow \dfrac{{{\text{4tan}}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\\ \Rightarrow \dfrac{{{\text{4tan3}}{0^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\\
And we know tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}
Then,

4(13)1+(13)2 3 ——- eq.4  \Rightarrow \dfrac{{4(\dfrac{1}{{\sqrt 3 }})}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}} \\\ \Rightarrow \sqrt 3 {\text{ ------- eq}}{\text{.4}} \\\
From eq.3 and eq.4 we observe that
LHS=RHS Hence Proved

(iii)cos2θ = 1tan2θ1+tan2θ\left( {{\text{iii}}} \right){\text{cos2}}\theta {\text{ = }}\dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }}
On puttingθ=30\theta = {30^ \circ } in LHS, we get
cos2θ cos2(30)  \Rightarrow {\text{cos2}}\theta \\\ \Rightarrow \cos {\text{2(3}}{0^ \circ }) \\\
And, we cos60=12\cos {60^ \circ } = \dfrac{1}{2}
cos60 12 ——– eq.5  \Rightarrow \cos {60^ \circ } \\\ \Rightarrow \dfrac{1}{2}{\text{ -------- eq}}{\text{.5}} \\\
On puttingθ=30\theta = {30^ \circ } in RHS, we get
1tan2θ1+tan2θ 1tan2301+tan230  \Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}\theta }}{{1 + {\text{ta}}{{\text{n}}^2}\theta }} \\\ \Rightarrow \dfrac{{1 - {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}}{{1 + {\text{ta}}{{\text{n}}^2}{{30}^ \circ }}} \\\
And we know tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}
Then,

1(13)21+(13)2  12 ——- eq.6  \Rightarrow {\dfrac{{1 - {{(\dfrac{1}{{\sqrt 3 }})}^2}}}{{1 + {{(\dfrac{1}{{\sqrt 3 }})}^2}}}^{}}{\text{ }} \\\ \Rightarrow \dfrac{1}{2}{\text{ ------- eq}}{\text{.6}} \\\
From eq.5 and eq.6 we observe that
LHS=RHS Hence Proved

(iv)cos3θ = 4cos3θ3cosθ\left( {{\text{iv}}} \right){\text{cos3}}\theta {\text{ = 4co}}{{\text{s}}^3}\theta - 3{\text{cos}}\theta
On puttingθ=30\theta = {30^ \circ } in LHS, we get
cos2θ cos3(30)  \Rightarrow {\text{cos2}}\theta \\\ \Rightarrow \cos 3{\text{(3}}{0^ \circ }) \\\
And, we know cos90=0{\text{cos9}}{0^ \circ } = 0
Then,
cos90 0 ——-eq.7  \Rightarrow \cos {90^ \circ } \\\ \Rightarrow 0{\text{ -------eq}}{\text{.7}} \\\
On puttingθ=30\theta = {30^ \circ } in RHS, we get
4cos3θ3cosθ 4cos3303cos30  \Rightarrow 4{\text{co}}{{\text{s}}^3}\theta - {\text{3cos}}\theta \\\ \Rightarrow 4{\text{co}}{{\text{s}}^3}{30^ \circ } - {\text{3cos}}{30^ \circ } \\\
And, we know cos 30=32{\text{cos 3}}{0^ \circ } = \dfrac{{\sqrt 3 }}{2}
Then,
4(32)33(32)  0 ——-eq.8  \Rightarrow 4{(\dfrac{{\sqrt 3 }}{2})^3} - 3(\dfrac{{\sqrt 3 }}{2}){\text{ }} \\\ \Rightarrow 0{\text{ -------eq}}{\text{.8}} \\\
From eq.7 and eq.8 we observe that
LHS=RHS Hence Proved

Note: Whenever you get this type of question the key concept to solve this question is to evaluate the separate Left Hand Side(LHS) and Right Hand Side(RHS) and check if both are the same then the given question is true otherwise false. And one more thing to remember is to learn the commonly used trigonometric angles values like tan30=13,cos30=32\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} etc.