Solveeit Logo

Question

Mathematics Question on Types of Functions

 If the function f:NN is defined as f(n)={n1,if n is even n+1,if n is odd, then:\text{ If the function } f : \mathbb{N} \to \mathbb{N} \text{ is defined as } f(n) = \begin{cases} n - 1, & \text{if } n \text{ is even} \\\ n + 1, & \text{if } n \text{ is odd} \end{cases} \text{, then:}
(A) f is injective
(B) f is into
(C) f is surjective
(D) f is invertible
Choose the correct answer from the options given below:

A

(B) only

B

(A), (B), and (D) only

C

(A) and (C) only

D

(A), (C), and (D) only

Answer

(A), (C), and (D) only

Explanation

Solution

For n even: f(n)=n1f(n) = n - 1. For n odd: f(n)=n+1f(n) = n + 1.

f is injective : No two different inputs map to the same output. For example:

  • If n1n_1 and n2n_2 are even or odd, the outputs f(n1)f(n2)f(n_1) \neq f(n_2).
  • If n1n_1 is even and n2n_2 is odd, their outputs f(n1)=n11f(n_1) = n_1 - 1 and f(n2)=n2+1f(n_2) = n_2 + 1 are distinct.

Hence, f is injective.

f is surjective : Every natural number kNk \in \mathbb{N} is an output of f :

  • For odd k , k=f(k1)k = f(k - 1), where k1k - 1 is even.
  • For even k , k=f(k+1)k = f(k + 1), where k+1k + 1 is odd.

Hence, f is surjective.

f is invertible : Since f is both injective and surjective, it is invertible. The inverse function f1f^{-1} is:

f1(n)={n+1,if n is odd n1,if n is evenf^{-1}(n) = \begin{cases} n + 1, & \text{if } n \text{ is odd} \\\ n - 1, & \text{if } n \text{ is even} \end{cases}

Thus, the function f satisfies properties (A), (C), and (D).

Answer:

(A),(C), and (D)(A), (C), \text{ and } (D).