Solveeit Logo

Question

Mathematics Question on Derivatives

 If siny=xsin(a+y), then dydx is:\text{ If } \sin y = x \sin(a + y), \text{ then } \frac{dy}{dx} \text{ is:}

A

sina2sin(a+y)\frac{\sin \frac{a}{2}}{\sin(a + y)}

B

sin(a+y)sin2a\frac{\sin(a + y)}{\sin^2 a}

C

sin(a+y)sina\frac{\sin(a + y)}{\sin a}

D

sin2(a+y)sina\frac{\sin^2(a + y)}{\sin a}

Answer

sin2(a+y)sina\frac{\sin^2(a + y)}{\sin a}

Explanation

Solution

The given equation is:

siny=xsin(a+y)\sin y = x \sin(a + y).

Differentiate both sides with respect to xx:

cosydydx=sin(a+y)+xcos(a+y)dydx\cos y \frac{dy}{dx} = \sin(a + y) + x \cos(a + y) \frac{dy}{dx}.

Rearrange to isolate dydx\frac{dy}{dx}:

dydx(cosyxcos(a+y))=sin(a+y)\frac{dy}{dx} (\cos y - x \cos(a + y)) = \sin(a + y).

Simplify:

dydx=sin(a+y)cosyxcos(a+y)\frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)}.

From the original equation siny=xsin(a+y)\sin y = x \sin(a + y), rewrite xx as:

x=sinysin(a+y)x = \frac{\sin y}{\sin(a + y)}.

Substitute xx into the denominator:

cosyxcos(a+y)=cosysinycos(a+y)sin(a+y)\cos y - x \cos(a + y) = \cos y - \frac{\sin y \cos(a + y)}{\sin(a + y)}.

Simplify the denominator:

cosyxcos(a+y)=cosysin(a+y)sinycos(a+y)sin(a+y)=sinasin(a+y)\cos y - x \cos(a + y) = \frac{\cos y \sin(a + y) - \sin y \cos(a + y)}{\sin(a + y)} = \frac{\sin a}{\sin(a + y)}.

Substitute this back into dydx\frac{dy}{dx}:

dydx=sin(a+y)sinasin(a+y)=sin2(a+y)sina\frac{dy}{dx} = \frac{\sin(a + y)}{\frac{\sin a}{\sin(a + y)}} = \frac{\sin^2(a + y)}{\sin a}.

Thus:

sin2(a+y)sina\boxed{\frac{\sin^2(a + y)}{\sin a}}.