Question
Mathematics Question on Derivatives
If siny=xsin(a+y), then dxdy is:
A
sin(a+y)sin2a
B
sin2asin(a+y)
C
sinasin(a+y)
D
sinasin2(a+y)
Answer
sinasin2(a+y)
Explanation
Solution
The given equation is:
siny=xsin(a+y).
Differentiate both sides with respect to x:
cosydxdy=sin(a+y)+xcos(a+y)dxdy.
Rearrange to isolate dxdy:
dxdy(cosy−xcos(a+y))=sin(a+y).
Simplify:
dxdy=cosy−xcos(a+y)sin(a+y).
From the original equation siny=xsin(a+y), rewrite x as:
x=sin(a+y)siny.
Substitute x into the denominator:
cosy−xcos(a+y)=cosy−sin(a+y)sinycos(a+y).
Simplify the denominator:
cosy−xcos(a+y)=sin(a+y)cosysin(a+y)−sinycos(a+y)=sin(a+y)sina.
Substitute this back into dxdy:
dxdy=sin(a+y)sinasin(a+y)=sinasin2(a+y).
Thus:
sinasin2(a+y).