Solveeit Logo

Question

Mathematics Question on Product of Matrices

 If P=[1 2 1] and Q=[241] are two matrices, then (PQ)T will be:\text{ If } P = \begin{bmatrix} -1 \\\ 2 \\\ 1 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 2 & -4 & 1 \end{bmatrix} \text{ are two matrices, then } (PQ)^T \text{ will be:}

A

[457 330 032]\begin{bmatrix} 4 & 5 & 7 \\\ -3 & -3 & 0 \\\ 0 & -3 & -2 \end{bmatrix}

B

[242 484 121]\begin{bmatrix} -2 & 4 & 2 \\\ 4 & -8 & -4 \\\ -1 & 2 & 1 \end{bmatrix}

C

[552 767 970]\begin{bmatrix} 5 & 5 & 2 \\\ 7 & 6 & 7 \\\ -9 & -7 & 0 \end{bmatrix}

D

[248 757 826]\begin{bmatrix} -2 & 4 & 8 \\\ 7 & 5 & 7 \\\ -8 & -2 & 6 \end{bmatrix}

Answer

[242 484 121]\begin{bmatrix} -2 & 4 & 2 \\\ 4 & -8 & -4 \\\ -1 & 2 & 1 \end{bmatrix}

Explanation

Solution

To find (PQ)(PQ)', we first compute the product PQPQ where:

  • PP is a column matrix of order 3×13 \times 1
  • QQ is a row matrix of order 1×31 \times 3

The product PQPQ will be a 3×33 \times 3 matrix given by:

PQ=[1\2\1]×[241]=[241\482\241]PQ = \begin{bmatrix}-1 \\\2 \\\1\end{bmatrix}\times\begin{bmatrix}2 & -4 & 1\end{bmatrix}=\begin{bmatrix}-2 & 4 & -1 \\\4 & -8 & 2 \\\2 & -4 & 1\end{bmatrix}

Next, we find the transpose (PQ)(PQ)':

(PQ)=[241\482\241]=[242\484121](PQ)' = \begin{bmatrix}-2 & 4 & -1 \\\4 & -8 & 2 \\\2 & -4 & 1\end{bmatrix}'=\begin{bmatrix}-2 & 4 & 2 \\\4 & -8 & -4 \\\\-1 & 2 & 1\end{bmatrix}

Thus, the correct answer is:

[242\484121]\begin{bmatrix}-2 & 4 & 2 \\\4 & -8 & -4 \\\\-1 & 2 & 1\end{bmatrix}