Solveeit Logo

Question

Mathematics Question on Vector Algebra

If λ>0, let θ be the angle between the vectors a=i^+λj^3k^ and b=3i^j^+2k^. If the vectors a+b and ab are mutually perpendicular, then the value of (14cosθ)2 is equal to.\text{If } \lambda>0, \text{ let } \theta \text{ be the angle between the vectors }\vec{a} = \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{b} = 3 \hat{i} - \hat{j} + 2 \hat{k}.\text{ If the vectors } \vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} \text{ are mutually perpendicular, then the value of } (14 \cos \theta)^2 \text{ is equal to.}

A

25

B

20

C

45

D

40

Answer

25

Explanation

Solution

Given that the vectors a+b\vec{a} + \vec{b} and ab\vec{a} - \vec{b} are mutually perpendicular, we have:

(a+b)(ab)=0.(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0.

Expanding this, we get:

aabb=0.\vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 0.

Calculating aa\vec{a} \cdot \vec{a} and bb\vec{b} \cdot \vec{b}:

aa=(1)2+(λ)2+(3)2=1+λ2+9=λ2+10.\vec{a} \cdot \vec{a} = (1)^2 + (\lambda)^2 + (-3)^2 = 1 + \lambda^2 + 9 = \lambda^2 + 10.

bb=(3)2+(1)2+(2)2=9+1+4=14.\vec{b} \cdot \vec{b} = (3)^2 + (-1)^2 + (2)^2 = 9 + 1 + 4 = 14.

Setting aa=bb\vec{a} \cdot \vec{a} = \vec{b} \cdot \vec{b}:

λ2+10=14.\lambda^2 + 10 = 14.

λ2=4.\lambda^2 = 4.

λ=2(since λ>0).\lambda = 2 \quad (\text{since } \lambda > 0).

Now, calculate ab\vec{a} \cdot \vec{b} to find cosθ\cos \theta:

ab=(1)(3)+(2)(1)+(3)(2)=326=5.\vec{a} \cdot \vec{b} = (1)(3) + (2)(-1) + (-3)(2) = 3 - 2 - 6 = -5.

The magnitudes are:

a=12+22+(3)2=1+4+9=14.|\vec{a}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14}.

b=32+(1)2+22=9+1+4=14.|\vec{b}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}.

Thus,

cosθ=abab=514.\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-5}{14}.

Now, we need to find (14cosθ)2(14 \cos \theta)^2:

(14cosθ)2=(14×514)2=(5)2=25.(14 \cos \theta)^2 = \left(14 \times \frac{-5}{14}\right)^2 = (-5)^2 = 25.