Question
Mathematics Question on Vector Algebra
If λ>0, let θ be the angle between the vectors a=i^+λj^−3k^ and b=3i^−j^+2k^. If the vectors a+b and a−b are mutually perpendicular, then the value of (14cosθ)2 is equal to.
A
25
B
20
C
45
D
40
Answer
25
Explanation
Solution
Given that the vectors a+b and a−b are mutually perpendicular, we have:
(a+b)⋅(a−b)=0.
Expanding this, we get:
a⋅a−b⋅b=0.
Calculating a⋅a and b⋅b:
a⋅a=(1)2+(λ)2+(−3)2=1+λ2+9=λ2+10.
b⋅b=(3)2+(−1)2+(2)2=9+1+4=14.
Setting a⋅a=b⋅b:
λ2+10=14.
λ2=4.
λ=2(since λ>0).
Now, calculate a⋅b to find cosθ:
a⋅b=(1)(3)+(2)(−1)+(−3)(2)=3−2−6=−5.
The magnitudes are:
∣a∣=12+22+(−3)2=1+4+9=14.
∣b∣=32+(−1)2+22=9+1+4=14.
Thus,
cosθ=∣a∣∣b∣a⋅b=14−5.
Now, we need to find (14cosθ)2:
(14cosθ)2=(14×14−5)2=(−5)2=25.