Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

 If f(x), defined by f(x)={kx+1if xπ cosxif x>π is continuous at x=π, then the value of k is:\text{ If } f(x), \text{ defined by } f(x) = \begin{cases} kx + 1 & \text{if } x \leq \pi \\\ \cos x & \text{if } x > \pi \end{cases} \text{ is continuous at } x = \pi, \text{ then the value of } k \text{ is:}

A

0

B

π\pi

C

2π\frac{2}{\pi}

D

2π-\frac{2}{\pi}

Answer

2π-\frac{2}{\pi}

Explanation

Solution

For f(x)f(x) to be continuous at x=πx = \pi, the left-hand limit (LHL), right-hand limit (RHL), and the value of the function at x=πx = \pi must all be equal.

The left-hand limit is:

LHL=limxπf(x)=kπ+1.LHL = \lim_{{x \to \pi^-}} f(x) = k\pi + 1.

The right-hand limit is:

RHL=limxπ+f(x)=cosπ=1.RHL = \lim_{{x \to \pi^+}} f(x) = \cos \pi = -1.

The value of the function at x=πx = \pi is:

f(π)=kπ+1.f(\pi) = k\pi + 1.

Since f(x)f(x) is continuous at x=πx = \pi, we must have:

LHL=RHL=f(π).LHL = RHL = f(\pi).

Equating the limits:

kπ+1=1.k\pi + 1 = -1.

Simplify to solve for kk:

kπ=2k=2π.k\pi = -2 \quad \Rightarrow \quad k = \frac{-2}{\pi}.

Thus, the value of kk is:

2π.\frac{-2}{\pi}.