Solveeit Logo

Question

Mathematics Question on Maxima & Minima

 If f(x)=sinx+12cos2x in [0,π2], then:\text{ If } f(x) = \sin x + \frac{1}{2} \cos 2x \text{ in } \left[ 0, \frac{\pi}{2} \right], \text{ then:}
(A) f(x)=cosxsin2xf'(x) = \cos x - \sin 2x
(B)The critical points of the function are x=π6x = \frac{\pi}{6} and x=π2x = \frac{\pi}{2}
(C) The minimum value of the function is 2
(D) The maximum value of the function is 34\frac{3}{4}

A

(A), (B), and (D) only

B

(A), (B), and (C) only

C

(B), (C), and (D) only

D

(A), (C), and (D) only

Answer

(A), (B), and (D) only

Explanation

Solution

Differentiate f(x)=sinx+12cos2x to find f(x)=cosxsin2x, verifying option (A).- \text{Differentiate } f(x) = \sin x + \frac{1}{2} \cos 2x \text{ to find } f'(x) = \cos x - \sin 2x, \text{ verifying option (A).}
Find the critical points by setting f(x)=0, confirming option (B).- \text{Find the critical points by setting } f'(x) = 0, \text{ confirming option (B).}
Evaluate the function at critical points to confirm the minimum and maximum values, verifying option (D) and showing that (C) is incorrect.- \text{Evaluate the function at critical points to confirm the minimum and maximum values, verifying option (D) and showing that (C) is incorrect.}