Solveeit Logo

Question

Mathematics Question on Matrices

 If Δ=1cosx1 cosx1cosx 1cosx1 , then:\text{ If } \Delta = \begin{vmatrix} 1 & \cos x & 1 \\\ -\cos x & 1 & \cos x \\\ -1 & -\cos x & 1 \\\ \end{vmatrix} , \text{ then:}
(A)  Δ=2(1cos2x)(A)\space \Delta = 2(1 - \cos^2 x)
(B)  Δ=2(2sin2x)(B)\space \Delta = 2(2 - \sin^2 x)
(C) Minimum value of ∆ is 2
(D) Maximum value of Δ\Delta is 4

A

(A), (C), and (D) only

B

(A), (B), and (C) only

C

(A), (B), (C), and (D)

D

(B), (C), and (D) only

Answer

(B), (C), and (D) only

Explanation

Solution

The determinant Δ\Delta is given as:

Δ=1cosx1 cosx1cosx 1cosx1.\Delta = \begin{vmatrix} 1 & \cos x & 1 \\\ -\cos x & 1 & \cos x \\\ -1 & -\cos x & 1 \end{vmatrix}.

Expand the determinant:

Δ=11cosx cosx1cosxcosxcosx 11+1cosx1 1cosx. \Delta = 1 \cdot \begin{vmatrix} 1 & \cos x \\\ -\cos x & 1 \end{vmatrix} - \cos x \cdot \begin{vmatrix} -\cos x & \cos x \\\ -1 & 1 \end{vmatrix} +1 \cdot \begin{vmatrix} -\cos x & 1 \\\ -1 & -\cos x \end{vmatrix}.

Compute each minor:

1cosx cosx1=1cos2x,cosxcosx 11=cosxcosx=0,cosx1 1cosx=cos2x1.\begin{vmatrix} 1 & \cos x \\\ -\cos x & 1 \end{vmatrix} = 1 - \cos^2 x, \quad \begin{vmatrix} -\cos x & \cos x \\\ -1 & 1 \end{vmatrix} = \cos x -\cos x = 0, \quad \begin{vmatrix} -\cos x & 1 \\\ -1 & -\cos x \end{vmatrix} = \cos^2 x - 1.

Substitute back:

Δ=(1cos2x)+0+(cos2x1)=2sin2x. \Delta = (1 - \cos^2 x) + 0 + (\cos^2 x - 1) = 2 - \sin^2 x.

Simplify:

Δ=2(2sin2x).\Delta = 2(2 - \sin^2 x).

This matches option (B).

The minimum value of Δ\Delta occurs when sin2x=1\sin^2 x = 1, giving:

Δmin=2(21)=2.\Delta_{\min} = 2(2 - 1) = 2.

The maximum value of Δ\Delta occurs when sin2x=0\sin^2 x = 0, giving:

Δmax=2(20)=4.\Delta_{\max} = 2(2 - 0) = 4.

Thus, options (B), (C), and (D) are correct.

(B),(C), and (D) only\boxed{(B), (C), \text{ and } (D) \text{ only}}.