Question
Mathematics Question on Matrices
If Δ=1 −cosx −1 cosx1−cosx1cosx1, then:
(A)Δ=2(1−cos2x)
(B)Δ=2(2−sin2x)
(C) Minimum value of ∆ is 2
(D) Maximum value of Δ is 4
(A), (C), and (D) only
(A), (B), and (C) only
(A), (B), (C), and (D)
(B), (C), and (D) only
(B), (C), and (D) only
Solution
The determinant Δ is given as:
Δ=1 −cosx −1cosx1−cosx1cosx1.
Expand the determinant:
Δ=1⋅1 −cosxcosx1−cosx⋅−cosx −1cosx1+1⋅−cosx −11−cosx.
Compute each minor:
1 −cosxcosx1=1−cos2x,−cosx −1cosx1=cosx−cosx=0,−cosx −11−cosx=cos2x−1.
Substitute back:
Δ=(1−cos2x)+0+(cos2x−1)=2−sin2x.
Simplify:
Δ=2(2−sin2x).
This matches option (B).
The minimum value of Δ occurs when sin2x=1, giving:
Δmin=2(2−1)=2.
The maximum value of Δ occurs when sin2x=0, giving:
Δmax=2(2−0)=4.
Thus, options (B), (C), and (D) are correct.
(B),(C), and (D) only.