Question
Question: \[\text{If }A=\left[ \begin{matrix} 1 & \dfrac{1}{2} \\\ 0 & 1 \\\ \end{matrix} \right]\...
1 & \dfrac{1}{2} \\\
0 & 1 \\\
\end{matrix} \right]\text{ then }{{A}^{64}}\text{ is:}$$
(a) $$\left[ \begin{matrix}
1 & 32 \\\
32 & 1 \\\
\end{matrix} \right]$$
(b) $$\left[ \begin{matrix}
1 & 0 \\\
32 & 1 \\\
\end{matrix} \right]$$
(c) $$\left[ \begin{matrix}
1 & 32 \\\
0 & 1 \\\
\end{matrix} \right]$$
(d) None of these
Explanation
Solution
Hint: To solve this question, we will first find matrices A2,A3,A4. Then we will develop a relationship between the matrix A and the calculated matrices A2,A3,A4. With the help of this relation, we will determine what will be matrix A64.
Complete step-by-step answer:
In our question, it is given that