Solveeit Logo

Question

Chemistry Question on Thermodynamics

\text{For a certain thermochemical reaction } \text{M} \rightarrow \text{N at } T = 400 \, \text{K}, \, \Delta H^\circ = 77.2 \, \text{kJ mol}^{-1}, \, \Delta S = 122 \, \text{JK}^{-1}, \\\ \text{log equilibrium constant (log K) is } - \\_\\_\\_\\_\\_ \times 10^{-1}.

Answer

The standard Gibbs free energy change (ΔG\Delta G^\circ) is related to the enthalpy change (ΔH\Delta H^\circ) and entropy change (ΔS\Delta S^\circ) by the equation:

ΔG=ΔHTΔS.\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ.

Substitute the given values:
ΔH=77.2×103J,T=400K,ΔS=122J/K.\Delta H^\circ = 77.2 \times 10^3 \, \text{J}, \, T = 400 \, \text{K}, \, \Delta S^\circ = 122 \, \text{J/K}.

ΔG=77.2×103400×122=28400J.\Delta G^\circ = 77.2 \times 10^3 - 400 \times 122 = 28400 \, \text{J}.

The relationship between ΔG\Delta G^\circ and the equilibrium constant (KK) is:

ΔG=2.303RTlogK.\Delta G^\circ = -2.303 RT \log K.

Substitute ΔG=28400J,R=8.314J K,T=400K\Delta G^\circ = 28400 \, \text{J}, R = 8.314 \, \text{J K}, T = 400 \, \text{K}:
28400=2.303×8.314×400logK.28400 = -2.303 \times 8.314 \times 400 \log K.

Simplify:
logK=284002.303×8.314×400.\log K = \frac{-28400}{2.303 \times 8.314 \times 400}.

Calculate:
logK=284007668.8=3.708.\log K = \frac{-28400}{7668.8} = -3.708.

Thus: K=10logK=103.708.K = 10^{\log K} = 10^{-3.708}.

The Correct answer is: 37