Solveeit Logo

Question

Question: \( {\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text...

Find the equation of the parabola if the focus is at(6,6) and the vertex is at (2,2).  {\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text{ and the vertex}} \\\ {\text{is at }}\left( { - 2,2} \right). \\\

Explanation

Solution

Let Z(x1,  y1) be the coordinates of the point of intersection of the axis and the directrix of the parabola. Then the vertex V(2,  2)  is the mid point of the line segment joining Z(x1,  y1) and the focus S(6,  6). x162=2  x1=2 &y162=2y1=10 Thus the directrix meets the axis at Z(2,10). Let m1 be the slope of axis. Then, m1 = (Slope of the line joining the focus S and vertex V)=626+2=84=2 Slope of the directrix which is perpendicular to axis is  m = - 1m1=12 equation of directrix which is passing from (2,10) is y - 10 = - 12(x2) 2y+x22=0 Let P(x,y) be a point on parabola. Then, Distance of P from the focus = Perpendicular distance of P from the Directrix (Parabola property) (x+6)2+(y+6)2=2y+x2222+12 (x+6)2+(y+6)2=(2y+x22)25 5x2+5y2+60x+60y+360=4y2+x2+484+4xy44x88y 4x2+y24xy+104x+148y124=0 (2xy)2+4(26x+37y31)=0 So, this is your required equation of parabola. NOTE: - In this particular type of questions first find the intersection  point of axis and directrix, then find out equation of directrix  then apply parabola property you will get your answer.  {\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\\ {\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\\ \Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\\ \& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\\ {\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\\ {\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\\ {{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\\ \Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\\ {\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\\ \Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\\ {\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\\ \Rightarrow 2y + x - 22 = 0 \\\ {\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\\ {\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\\ \Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\\ \Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\\ \Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\\ \Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\\ \Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\\ {\text{So, this is your required equation of parabola}}{\text{.}} \\\ {\text{NOTE: - In this particular type of questions first find the intersection}} \\\ {\text{ point of axis and directrix, then find out equation of directrix}} \\\ {\text{ then apply parabola property you will get your answer}}{\text{.}} \\\