Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

Evaluate ex(2x+12x)dx:\text{Evaluate } \int e^x \left( \frac{2x + 1}{2 \sqrt{x}} \right) dx:

A

12xex+C\frac{1}{2\sqrt{x}} e^x + C

B

exx+C-e^x \sqrt{x} + C

C

12xex+C-\frac{1}{2\sqrt{x}} e^x + C

D

exx+Ce^x \sqrt{x} + C

Answer

exx+Ce^x \sqrt{x} + C

Explanation

Solution

The given integral is:

I=ex(2x+12x)dx.I = \int e^x \left( \frac{2x + 1}{2\sqrt{x}} \right) dx.

Simplify the integrand:

2x+12x=2x2x+12x=x+12x.\frac{2x + 1}{2\sqrt{x}} = \frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2\sqrt{x}}.

Substitute this into the integral:

I=ex(x+12x)dx.I = \int e^x \left( \sqrt{x} + \frac{1}{2\sqrt{x}} \right) dx.

Split the integral:

I=exxdx+12exdxx.I = \int e^x \sqrt{x} \, dx + \frac{1}{2} \int e^x \frac{dx}{\sqrt{x}}.

Let u=xu = \sqrt{x}, so x=u2x = u^2 and dx=2ududx = 2u \, du. Substitute into both terms.

For the first term:

exxdx=exu2udu=exu2du=exu2=exx.\int e^x \sqrt{x} \, dx = \int e^x u \cdot 2u \, du = \int e^x u^2 \, du = e^x u^2 = e^x \sqrt{x}.

For the second term:

12exdxx=12exu12udu=exdu=ex.\frac{1}{2} \int e^x \frac{dx}{\sqrt{x}} = \frac{1}{2} \int e^x u^{-1} \cdot 2u \, du = \int e^x du = e^x.

Combine the results:

I=exx+ex+C.I = e^x \sqrt{x} + e^x + C.

Thus:

I=exx+C.I = e^x \sqrt{x} + C.